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INTRODUCTION

Let Pn
Z = Proj(Z[T0, T1, . . . , Tn]), Hi = {Ti = 0} and zi = Ti/T0 for i = 0, 1, . . . , n.

Let us fix a sequence aaa = (a0, a1, . . . , an) of positive numbers. We define a H0-Green
function gaaa of (C∞ ∩PSH)-type on Pn(C) and an arithmetic divisor Daaa of (C∞ ∩PSH)-
type on Pn

Z to be

gaaa := log(a0 + a1|z1|2 + · · · + an|zn|2) and Daaa := (H0, gaaa).

In this paper, we will observe several properties ofDaaa and give the exact form of the Zariski
decomposition of Daaa on P1

Z. Further, we will show that, if n ≥ 2 and Daaa is big and not
nef, then, for any birational morphism f : X → Pn

Z of projective, generically smooth and
normal arithmetic varieties, we can not expect a suitable Zariski decomposition of f∗(Daaa).
In this sense, the results in [9] are nothing short of miraculous, and arithmetic linear series
are very complicated and have richer structure than what we expected. We also give a
concrete construction of Fujita’s approximation of Daaa. The following is a list of the main
results of this paper.

Main Results. Let ϕaaa : Rn+1
≥0 → R be a function given by

ϕaaa(x0, x1, . . . , xn) := −
n∑

i=0

xi log xi +
n∑

i=0

xi log ai,

and let

Θaaa := {(x1, . . . , xn) ∈ ∆n | ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn) ≥ 0} ,
where ∆n :=

{
(x1, . . . , xn) ∈ Rn

≥0 | x1 + · · · + xn ≤ 1
}

. Then the following properties
hold for Daaa:

(1) Daaa is ample if and only if a0 > 1, a1 > 1, . . . , an > 1.
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(2) Daaa is nef if and only if a0 ≥ 1, a1 ≥ 1, . . . , an ≥ 1.
(3) Daaa is big if and only if a0 + a1 + · · · + an > 1.
(4) Daaa is pseudo-effective if and only if a0 + a1 + · · · + an ≥ 1.

-
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FIGURE 1. Geography of Daaa on P1
Z

(5) Ĥ0(Pn
Z, lDaaa) 6= {0} if and only if lΘaaa ∩ Zn 6= ∅. As consequences, we have the

following:
(5.1) We assume that a0 + a1 + · · · + an = 1. For a positive integer l,

Ĥ0(Pn
Z, lDaaa) =

{
{0,±zla1

1 · · · zlan
n } if la1, . . . , lan ∈ Z,

{0} otherwise.

In particular, if aaa 6∈ Qn+1, then Ĥ0(Pn
Z, lDaaa) = {0} for all l ≥ 1.

(5.2) For any positive integer l, there exists aaa ∈ Qn+1
>0 such that Daaa is big and

Ĥ0(Pn
Z, kDaaa) = {0}

for all k with 1 ≤ k ≤ l.
(6)

〈
Ĥ0(Pn

Z, lDaaa)
〉

Z
=

⊕
(e1,...,en)∈lΘaaa∩Zn

Zze1
1 · · · zen

n if lΘaaa ∩ Zn 6= ∅.

(7) (Integral formula) The following formulae hold:

v̂ol(Daaa) =
(n+ 1)!

2

∫
Θaaa

ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)dx1 · · · dxn,

and

d̂eg(Dn+1
aaa ) =

(n+ 1)!
2

∫
∆n

ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)dx1 · · · dxn.

In particular, d̂eg(Dn+1
aaa ) = v̂ol(Daaa) if and only if Daaa is nef.

(8) (Zariski decomposition for n = 1) We assume n = 1. The Zariski decomposition
of Daaa exists if and only if a0 + a1 ≥ 1. Moreover, the positive part of Daaa is given
by (θaaaH0 − ϑaaaH1, paaa), where ϑaaa = inf Θaaa, θaaa = sup Θaaa and

paaa(z1) =


ϑaaa log |z1|2 if |z1| <

√
a0ϑaaa

a1(1−ϑaaa) ,

log(a0 + a1|z1|2) if
√

a0ϑaaa
a1(1−ϑaaa) ≤ |z1| ≤

√
a0θaaa

a1(1−θaaa) ,

θaaa log |z1|2 if |z1| >
√

a0θaaa
a1(1−θaaa) ,
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In particular, if a0 + a1 = 1, then the positive part is −a1(̂z1).
(9) (Impossibility of Zariski decomposition for n ≥ 2) We assume n ≥ 2. If Daaa is

big and not nef (i.e., a0 + · · · + an > 1 and ai < 1 for some i), then, for any
birational morphism f : X → Pn

Z of projective, generically smooth and normal
arithmetic varieties, there is no decomposition f∗(Daaa) = P+N with the following
properties:

(9.1) P is a nef and big arithmetic R-divisor of (C0 ∩ PSH)-type on X .
(9.2) N is an effective arithmetic R-divisor of C0-type on X .
(9.3) For any horizontal prime divisor Γ on X (i.e. Γ is a reduced and irreducible

divisor on X such that Γ is flat over Z),

multΓ(N)

≤ inf
{

multΓ(f∗(H0) + (1/l)(φ)) | l ∈ Z>0, φ ∈ Ĥ0(lf∗(Daaa)) \ {0}
}
.

(10) (Fujita’s approximation) We assume that Daaa is big. Let Int(Θaaa) be the set of
interior points of Θaaa. We choose xxx1, . . . ,xxxr ∈ Int(Θaaa) ∩ Qn such that

(n+ 1)!
2

∫
Θ
φ(xxx1,ϕaaa(exxx1)),...,(xxxr,ϕaaa(exxxr))(xxx)dxxx > v̂ol(Daaa) − ε,

where Θ := Conv{xxx1, . . . ,xxxr} and

φ(xxx1,ϕaaa(exxx1)),...,(xxxr,ϕaaa(exxxr))(xxx) :=

max{t ∈ R | (xxx, t) ∈ Conv{(xxx1, ϕaaa(x̃xx1)), . . . , (xxxr, ϕaaa(x̃xxr))} ⊆ Rn × R}

for xxx ∈ Θ (see Conventions and terminology 2 for the definition of x̃xx1, . . . , x̃xxr).
Using the above points xxx1, . . . ,xxxr, we can construct a birational morphisms µ :
Y → Pn

Z of projective, generically smooth and normal arithmetic varieties, and a
nef arithmetic Q-divisor P of (C∞ ∩ PSH)-type on Y such that

P ≤ µ∗(Daaa) and v̂ol(P ) > v̂ol(Daaa) − ε.

For details, see Section 6.

I would like to express my thanks to Prof. Yuan. The studies of this paper started from
his question. I thank Dr. Uchida. Without his calculation of the limit of a sequence, I could
not find the positive part of Daaa on P1

Z. In addition, I also thank Dr. Hajli for his comments.

Conventions and terminology.

1. For xxx = (x1, . . . , xr) ∈ Rr, the i-th entry xi of xxx is denoted by xxx(i). We define |xxx| to
be |xxx| := x1 + · · · + xr.

2. For xxx = (x1, . . . , xr) ∈ Rr and m ∈ R, we define x̃xxm ∈ Rr+1 to be

x̃xxm = (m− x1 − · · · − xr, x1, . . . , xr).

Note that |x̃xxm| = m. For simplicity, in the case where m = 1, we denote x̃xxm by x̃xx.

3. Let eee = (e1, . . . , er) ∈ Zr
≥0 and l = |eee|. A monomial ze1

1 · · · zer
r is denoted by zeee. The

multinomial coefficient
l!

e1! · · · er!
is denoted by

(
l

eee

)
.

4. We freely use the notations in the paper [9].
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1. FUNDAMENTAL PROPERTIES OF THE CHARACTERISTIC FUNCTION

Let Pn
Z = Proj(Z[T0, T1, . . . , Tn]), Hi = {Ti = 0} and zi = Ti/T0 for i = 0, . . . , n.

Let us fix aaa = (a0, a1, . . . , an) ∈ Rn+1
>0 . We set

haaa = a0 + a1|z1|2 + · · · + an|zn|2, gaaa = log haaa and ωaaa = ddc(gaaa)

on Pn(C), that is,

gaaa = − log |T0|2 + log
(
a0|T0|2 + · · · + an|Tn|2

)
.

Proposition 1.1. (1) ωaaa is positive. In particular, gaaa is a H0-Green function of (C∞∩
PSH)-type.

(2) If we set Φaaa = ω∧n
aaa , then

Φaaa =
(√

−1
2π

)n
n!a0 · · · an

hn+1
aaa

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

and
∫

Pn(C)
Φaaa = 1.

Proof. (1) Note that

ωaaa =
√
−1
2π

 n∑
i=1

ai

haaa(z)
dzi ∧ dz̄i −

∑
i,j

aiaj z̄izj
haaa(z)2

dzi ∧ dz̄j

 .

If we set

A =
(
δij

ai

haaa(z)
− aiaj z̄izj

haaa(z)2

)
1≤i≤n,
1≤j≤n

,

then it is easy to see that

(
λ̄1 · · · λ̄n

)
A

λ1
...
λn

 =
a0
∑n

i=1 ai|λi|2 +
∑

i<j aiaj |ziλ̄j − zjλ̄i|2

haaa(z)2
.

Thus ωaaa is positive definite.

(2) The first assertion follows from the following claim:

Claim 1.1.1. For α1, . . . , αn ∈ C,

det
(
δijti − αiᾱj

)
1≤i≤n
1≤j≤n

= t1 · · · tn −
n∑

i=1

|αi|2t1 · · · ti−1 · ti+1 · · · tn.

Proof. We denote
(
δijti − αiᾱj

)
1≤i≤n
1≤j≤n

by B. If ti = tj = 0 for i 6= j, then the i-the

column and the j-the column of B are linearly dependent, so that detB = 0. Therefore,
we can set

detB = t1 · · · tn −
n∑

i=1

cit1 · · · ti−1 · ti+1 · · · tn

for some c1, . . . , cn ∈ C. It is easy to see that detB = −|αi|2 if ti = 0 and t1 = · · · =
ti−1 = ti+1 = · · · = tn = 1. Thus ci = |αi|2. �
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Let | · |aaa be a C∞-hermitian metric of O(1) given by

|Ti|aaa =
|Ti|√

a0|T1|2 + a1|T1|2 + · · · + an|Tn|2

for i = 0, . . . , n. Then c1(O(1), | · |aaa) = ωaaa. Thus the second assertion follows. �

We define a function ϕaaa : Rn+1
≥0 → R to be

ϕaaa(x0, . . . , xn) = −
n∑

i=0

xi log xi +
n∑

i=0

xi log ai,

which is called the characteristic function of gaaa. The function ϕaaa play a key role in this

paper. Here note that ϕaaa(0, . . . ,
i
∨
1, . . . , 0) = log ai for i = 0, . . . , n. Notably the charac-

teristic function is very similar to the entropy function in the coding theory.

Lemma 1.2. For (x0, . . . , xn) ∈ Rn+1
≥0 with x0 + x1 + · · · + xn = 1,

ϕaaa(x0, . . . , xn) ≤ log(a0 + a1 + · · · + an),

and the equality holds if and only if

x0 = a0/(a0 + a1 + · · · + an), . . . , xn = an/(a0 + a1 + · · · + an).

Proof. Let us begin with the following claim:

Claim 1.2.1. For α1, . . . , αr, β1, . . . , βr, t1, . . . , tr ∈ R>0 with α1 + · · · + αr = 1,
r∑

i=1

αi log ti ≤ log

(
r∑

i=1

βiti

)
+

r∑
i=1

αi log
αi

βi
,

and the equality holds if and only if β1

α1
t1 = · · · = βr

αr
tr.

Proof. Note that if we set t′i = βi

αi
ti for i = 1, . . . , r, then

r∑
i=1

αi log ti − log

(
r∑

i=1

βiti

)
=

r∑
i=1

αi log t′i − log

(
r∑

i=1

αit
′
i

)
+

r∑
i=1

αi log
αi

βi
.

Thus we may assume that αi = βi for all i. In this case, the inequality is nothing more than
Jensen’s inequality for the strictly concave function log. �

We set I = {i | xi 6= 0}. Then, using the above claim, we have∑
i∈I

xi log ai ≤ log

(∑
i∈I

ai

)
+
∑
i∈I

xi log xi,

and hence

ϕaaa(x0, . . . , xn) =
∑
i∈I

−xi log xi +
∑
i∈I

xi log ai

≤ log

(∑
i∈I

ai

)
≤ log(a0 + · · · + an).

In addition, the equality holds if and only if ai/xi = aj/xj for all i, j ∈ I and ai = 0 for
all i 6∈ I . Thus the assertion follows. �
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Note that

H0(Pn
Z, lH0) =

⊕
eee∈Zn

≥0,|eee|≤l

Zzeee

(for the definition of |eee| and zeee, see Conventions and terminology 1 and 3). According as
[9], | · |lgaaa , ‖ · ‖lgaaa and 〈·, ·〉lgaaa are defined by

|φ|lgaaa := |φ| exp(−lgaaa/2), ‖φ‖lgaaa := sup{|φ|lgaaa(x) | x ∈ Pn(C)}

and

〈φ, ψ〉lgaaa :=
∫

Pn(C)
φψ̄ exp(−lgaaa)Φaaa,

where φ, ψ ∈ H0(Pn(C), lH0).

Proposition 1.3. Let l be a positive integer and eee = (e1, . . . , en), eee′ = (e′1, . . . , e
′
n) ∈ Zn

≥0

with |eee|, |eee′| ≤ l.

(1) ‖zeee‖2
lgaaa

= exp(−lϕaaa(ẽee
l/l)) (for the definition of ẽeel, see Conventions and termi-

nology 2).
(2)

〈zeee, zeee′〉lgaaa =


0 if eee 6= eee′,

1(
n+l
n

)( l
eeeel

)
aaaeeeel if eee = eee′

(for the definition of
( l

eeeel

)
, see Conventions and terminology 3).

Proof. (1) By the definition of |zeee|lgaaa , we can see

log |zeee|2lgaaa
= e0 log |T0|2 + · · · + en log |Tn|2 − l log(a0|T0|2 + · · · + an|Tn|2),

where e0 = l − e1 − · · · − en and (T0 : · · · : Tn) is a homogeneous coordinate of Pn(C)
such that zi = Ti/T0. Here we set e′i = ei/l for i = 0, . . . , l and I = {i | ei 6= 0}. Then,
by using Claim 1.2.1,

1
l

log |zeee|2lgaaa
≤
∑
i∈I

e′i log |Ti|2 − log

(∑
i∈I

ai|Ti|2
)

≤ −ϕaaa(e′0, . . . , e
′
n).

Moreover, if we set Ti =
√
e′i/ai for i = 0, . . . , n, then the equality holds. Thus (1)

follows.

(2) First of all, Proposition 1.1,

〈zeee, zeee′〉lgaaa =
(√

−1
2π

)n ∫
Pn(C)

n!a0 · · · anz
eeez̄eee′dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

(a0 + a1|z1|2 + · · · + an|zn|2)n+l+1
.

If we set zi = x
1/2
i exp(2π

√
−1θi), then the above integral is equal to∫

Rn×[0,1]n

n!a0 · · · an
∏n

i=1 x
(ei+e′i)/2
i exp(2π

√
−1(ei − e′i))

(a0 + a1x1 + · · · + anxn)n+l+1
dx1 · · · dxndθ1 · · · dθn,
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and hence

〈zeee, zeee′〉lgaaa =


0 if eee 6= eee′,

∫
Rn

n!a0 · · · anx
e1
1 · · ·xen

n

(a0 + a1x1 + · · · + anxn)n+l+1
dx1 · · · dxn if eee = eee′.

It is easy to see that∫ ∞

0

axm

(ax+ b)n
dx =

m!
ambn−m−1(n− 1)(n− 2) · · · (n−m)(n−m− 1)

for a, b ∈ R>0 and n,m ∈ Z≥0 with n−m ≥ 2. Thus we can see

〈zeee, zeee〉lgaaa =
n!en! · · · e1!

(n+ l)(n+ l − 1) · · · (e0 + 1)aen
n · · · ae1

1 a
e0
0

,

where e0 = l − e1 − · · · − en. Therefore the assertion follows. �
Next we observe the following lemma:

Lemma 1.4. If we set An = (n+ 2)/2 and Bn = (n+ 2) log
√

2π + (n+ 2)/12, then∣∣∣∣1l log
(

l!
k0! · · · kn!

ak0
0 · · · akn

n

)
− ϕaaa(k0/l, . . . , kn/l)

∣∣∣∣ ≤ 1
l
(An log l +Bn)

holds for all l ≥ 1 and (k0, . . . , kn) ∈ Zn+1
≥0 with k0 + · · · + kn = l.

Proof. First of all, note that, for m ≥ 1,

m! =
√

2πm
mm

em
e

θm
12m (0 < θm < 1)

by Stirling’s formula. We set I = {i | ki 6= 0}. Then

log(l!) = log(
√

2πl) + l log l − l +
θl

12l
,

log(ki!) = log(
√

2πki) + ki log ki − ki +
θki

12ki
(i ∈ I).

Therefore,

1
l

log
(

l!
k0! · · · kn!

ak0
0 · · · akn

n

)
= ϕaaa(k0/l, . . . , kn/l)

+
1
l

log(
√

2πl) +
θl

12l2
−
∑
i∈I

(
1
l

log(
√

2πki) +
θki

12lki

)
,

which yields the assertion. �
Let Daaa be an arithmetic divisor of (C∞ ∩ PSH)-type on Pn

Z given by

Daaa := (H0, gaaa) = (H0, log(a0 + a1|z1|2 + · · · + an|zn|2)).
Moreover, for λ ∈ R, Θaaa,λ is defined to be

Θaaa,λ := {(x1, . . . , xn) ∈ ∆n | ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn) ≥ λ},
where ∆n = {(x1, . . . , xn) ∈ Rn

≥0 | x1 + · · · + xn ≤ 1}. Note that Θaaa,λ is a compact
convex set. For simplicity, we denote Θaaa,0 by Θaaa, that is,

Θaaa = {(x1, . . . , xn) ∈ ∆n | ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn) ≥ 0},
Finally we consider the following proposition:
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Proposition 1.5. Let us fix a positive integer l. Then we have the following:
(1) lΘaaa,λ ∩ Zn 6= ∅ if and only if there is a non-zero rational function φ on Pn

Z such
that lH0 + (φ) ≥ 0 and ‖φ‖lgaaa ≤ e−lλ.

(2) If lΘaaa,λ ∩ Z 6= ∅, then〈
{φ ∈ Rat(Pn

Z)× | lH0 + (φ) ≥ 0, ‖φ‖lgaaa ≤ e−lλ}
〉

Z
=

⊕
eee∈lΘaaa,λ∩Zn

Zzeee.

Proof. Let us begin with the following claim:

Claim 1.5.1. Let φ be a non-zero rational function on Pn
Z such that lH0 + (φ) ≥ 0 and

‖φ‖lgaaa ≤ e−lλ. If we write

φ =
∑

eee∈Zn
≥0,|eee|≤l

ceeez
eee (ceee ∈ Z),

then {eee | ceee 6= 0} ⊆ lΘaaa,λ.

Proof. Clearly we may assume that φ 6= 0. We set {eee | ceee 6= 0} = {eee1, . . . , eeem}, where
eeei 6= eeej for i 6= j. Let eeei be an extreme point of Conv{eee1, . . . , eeem}. Here let us see that
eeei ∈ lΘaaa,λ. Renumbering eee1, . . . , eeem, we may assume that i = 1. Then, for k ≥ 1,

φk = ckeee1
zkeee1 +

∑
k1,...,km∈Z≥0,

k1+···+km=k, k1 6=k

k!
k1! · · · km!

ck1
eee1

· · · ckm
eeem
zk1eee1+···+kmeeem .

Let us check that keee1 6= k1eee1 + · · ·+kmeeem holds for all k1, . . . , km ∈ Z≥0 with k1 + · · ·+
km = k and k1 6= k. Otherwise, eee1 = (k2/(k − k1))eee2 + · · · + (km/(k − k1))eeem. This
is a contradiction because eee1 is an extreme point of Conv{eee1, . . . , eeem}. Therefore, we can
write

φk = ckeee1
zkeee1 +

∑
eee′∈Zn

≥0,eee′ 6=keee1

c′eee′z
eee′

for some c′eee′ ∈ Z, which implies

〈φk, φk〉klgaaa =
c2k
eee1(

kl+n
n

)( kl
keeeel

1

)
aaakeeeel

1

+ (non-negative real number)

by Proposition 1.3. Since ‖φk‖klga ≤ e−λkl, we have 〈φk, φk〉klgaaa ≤ e−λkl, which yields(
kl + n

n

)(
kl

kẽeel1

)
aaakeeeel

1 ≥ eλkl.

Thus, by Lemma 1.4,

ϕaaa

(
kẽeel1
kl

)
≥ λ− 1

kl
(An log(kl) +Bn) − 1

kl
log
(
kl + n

n

)
.

Therefore, by taking k → ∞, ϕaaa

(
eeeel
1
l

)
≥ λ, and hence eee1 ∈ lΘaaa,λ.

Finally let us see the claim. Let eeei1 , . . . , eeeir be all extreme points of Conv{eee1, . . . , eeem}.
Then, by the above observation,

Conv{eee1, . . . , eeem} = Conv{eeei1 , . . . , eeeir} ⊆ lΘaaa,λ

because lΘaaa,λ is a convex set. �
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Let us go back to the proofs of (1) and (2). By Proposition 1.3,

‖zeee‖lgaaa = exp(−lϕaaa(ẽee
l/l)).

Thus (1) and (2) follow from the above claim. �
Remark 1.6. Let ρ̃aaa be a hermitian inner product of H0(Pn(C),OPn(1)) given by

(ρ̃aaa(Ti, Tj))0≤i,j≤n =


1/a0 0 · · · 0 0

0 1/a1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1/an−1 0
0 0 · · · 0 1/an

 .

Let ρaaa be the quotient C∞-hermitian metric of OPn(1) induced by ρ̃aaa and the canonical
surjective homomorphism

H0(Pn(C),OPn(1)) ⊗OPn → OPn(1).

Then gaaa = − log ρaaa(T0, T0).

Remark 1.7. Hajli [6] pointed out that, for (x1, . . . , xn) ∈ ∆n,

−ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)

is the Legendre-Fenchel transform of log(a0 + a1e
u1 + · · · + ane

un), that is,

− ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)

= sup {u1x1 + · · · + unxn − log(a0 + a1e
u1 + · · · + ane

un) | (u1, . . . , un) ∈ Rn} .
This can be easily checked by Claim 1.2.1.

2. INTEGRAL FORMULA AND GEOGRAPHY OF Daaa

Let X be a d-dimensional, generically smooth, normal and projective arithmetic variety.
Let D = (D, g) be an arithmetic R-divisor of C0-type on X . Let Φ be an F∞-invariant

volume form on X(C) with
∫

X(C)
Φ = 1. Recall that 〈φ, ψ〉g and ‖φ‖g,L2 are given by

〈φ, ψ〉g :=
∫

X(C)
φψ̄ exp(−g)Φ and ‖φ‖g,L2 :=

√
〈φ, φ〉g

for φ, ψ ∈ H0(X,D). We set

Ĥ0
L2(X,D) := {φ ∈ H0(X,D) | ‖φ‖g,L2 ≤ 1}.

Let us begin with the following lemmas:

Lemma 2.1. v̂ol(D) = lim
l→∞

log #Ĥ0
L2(X, lD)
ld/d!

.

Proof. First of all, note that

v̂ol(D) = lim
l→∞

log #Ĥ0(X, lD)
ld/d!

(cf. [9, Theorem 5.2.2]). Since Ĥ0(X, lD) ⊆ Ĥ0
L2(X, lD), we have

v̂ol(D) ≤ lim inf
l→∞

log #Ĥ0
L2(X, lD)
ld/d!

.
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On the other hand, by using Gromov’s inequality (cf. [9, Proposition 3.1.1]), there is a
constant C such that ‖ · ‖sup ≤ Cld−1‖ · ‖L2 on H0(X, lD). Thus, for any positive number
ε, ‖ · ‖sup ≤ exp(lε/2)‖ · ‖L2 holds for l � 1. This implies that

Ĥ0
L2(X, lD) ⊆ Ĥ0(X, l(D + (0, ε)))

for l � 1, which yields

lim sup
l→∞

log #Ĥ0
L2(X, lD)
ld/d!

≤ v̂ol(D + (0, ε)).

Therefore, by virtue of the continuity of v̂ol, we have

lim sup
l→∞

log #Ĥ0
L2(X, lD)
ld/d!

≤ v̂ol(D),

and hence the lemma follows. �

Lemma 2.2. Let Θ be a compact convex set in Rn such that vol(Θ) > 0. For each l ∈ Z≥1,
let Al = (aeee,eee′)eee,eee′∈lΘ∩Zn be a positive definite symmetric real matrix indexed by lΘ∩ Zn,
and let Kl be a subset of RlΘ∩Zn ' R#(lΘ∩Zn) given by

Kl =

(xeee) ∈ RlΘ∩Zn

∣∣∣∣∣∣
∑

eee,eee′∈lΘ∩Zn

aeee,eee′xeeexeee′ ≤ 1

 .

We assume that there are positive constantsC andD and a continuous function ϕ : Θ → R
such that ∣∣∣∣log

(
1
aeee,eee

)
− lϕ

(eee
l

)∣∣∣∣ ≤ C log(l) +D

for all l ∈ Z≥1 and eee ∈ lΘ ∩ Zn. Then we have

lim inf
l→∞

log #(Kl ∩ ZlΘ∩Zn
)

ln+1
≥ 1

2

∫
Θ
ϕ(xxx)dxxx.

Moreover, if Al is diagonal and all entries of Al are less than or equal to 1 (i.e., aeee,eee′ ≤ 1
∀eee,eee′ ∈ lΘ ∩ Zn) for each l, then

lim
l→∞

log #(Kl ∩ ZlΘ∩Zn
)

ln+1
=

1
2

∫
Θ
ϕ(xxx)dxxx.

Proof. By Minkowski’s theorem,

log #(Kl ∩ ZlΘ∩Zn
) ≥ log(vol(Kl)) −ml log(2),

where ml = #(lΘ ∩ Zn). Note that

log(vol(Kl)) = −1
2

log(det(Al)) + log Vml
,

where Vr = vol({(x1, . . . , xr) ∈ Rr | x2
1 + · · · + x2

r ≤ 1}). Moreover, by Hadamard’s
inequality,

det(Al) ≤
∏

eee∈lΘ∩Zn

aeee,eee.

Thus

log #(Kl ∩ ZlΘ∩Zn
) ≥ 1

2

∑
eee∈lΘ∩Zn

log
(

1
aeee,eee

)
+ log Vml

−ml log(2).
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Further, there is a positive constant c1 such that ml ≤ c1l
n for l ≥ 1. Thus we can see

lim
l→∞

log(Vml
)/ln+1 = 0.

Therefore, it is sufficient to show that

lim
l→∞

1
ln+1

∑
eee∈lΘ∩Zn

log
(

1
aeee,eee

)
=
∫

Θ
ϕ(xxx)dxxx.

By our assumption, we have

ϕ
(eee
l

)
− 1
l
(C log l +D) ≤ 1

l
log
(

1
aeee,eee

)
≤ ϕ

(eee
l

)
+

1
l
(C log l +D).

Note that

lim
l→∞

1
ln

∑
eee∈lΘ∩Zn

ϕ
(eee
l

)
= lim

l→∞

∑
xxx∈Θ∩(1/l)Zn

ϕ(xxx)
1
ln

=
∫

Θ
ϕ(xxx)dxxx.

On the other hand, since ml ≤ c1l
n, we can see

lim
l→∞

∑
eee∈lΘ∩Zn

1
ln+1

(C log l +D) = 0.

Thus the first assertion follows.

Next we assume that Al is diagonal for each l. Then, since

Kl ⊆
∏

eee∈lΘ∩Zn

[
−

√
1
aeee,eee

,

√
1
aeee,eee

]
,

we have

log #(Kl ∩ ZlΘ∩Zn
) ≤

∑
eee∈lΘ∩Zn

log

(
2

√
1
aeee,eee

+ 1

)
.

Thus

log #(Kl ∩ ZlΘ∩Zn
) ≤ 1

2

∑
eee∈lΘ∩Zn

log
(

1
aeee,eee

)
+ml log(3)

because aeee,eee ≤ 1 and 2t+ 1 ≤ 3t for t ≥ 1. Therefore, as before,

lim sup
l→∞

log #(Kl ∩ ZlΘ∩Zn
)

ln+1
≤ 1

2

∫
Θ
ϕ(xxx)dxxx.

�
From now on, we use the same notation as in Section 1. The purpose of this section is

to prove the following theorem:

Theorem 2.3. (1) (Integral formula) The following formulae hold:

v̂ol(Daaa) =
(n+ 1)!

2

∫
Θaaa

ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)dx1 · · · dxn,

and

d̂eg(Dn+1
aaa ) =

(n+ 1)!
2

∫
∆n

ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)dx1 · · · dxn.

(2) Daaa is ample if and only if aaa(i) > 1 for all i = 0, . . . , n.
(3) Daaa is nef if and only if aaa(i) ≥ 1 for all i = 0, . . . , n.
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(4) Daaa is big if and only if |aaa| > 1.
(5) Daaa is pseudo-effective if and only if |aaa| ≥ 1.
(6) If |aaa| = 1, then

Ĥ0(Pn
Z, lDaaa) =

{
{0,±zlaaa(1)

1 · · · zlaaa(n)
n } if laaa ∈ Zn+1,

{0} if laaa 6∈ Zn+1.

(7) d̂eg(Dn+1
aaa ) = v̂ol(Daaa) if and only if Daaa is nef.

Proof. First let us see the essential case of (1):

Claim 2.3.1. If |aaa| > 1, then v̂ol(Daaa) =
(n+ 1)!

2

∫
Θaaa

ϕaaa(̃ttt)dttt.

Proof. In this case, vol(Θaaa) > 0. By using Proposition 1.5,

Ĥ0(Pn
Z, lDaaa) ⊆

φ ∈
⊕

eee∈lΘaaa∩Zn

Zzeee

∣∣∣∣∣∣ 〈φ, φ〉lgaaa ≤ 1

 ⊆ Ĥ0
L2(Pn

Z, lDaaa),

which yields

v̂ol(Daaa) = (n+ 1)! lim
l→∞

log #
{
φ ∈

⊕
eee∈lΘaaa∩Zn Zzeee

∣∣ 〈φ, φ〉lgeee ≤ 1
}

ln+1

by Lemma 2.1. If we set

Kl =

(xeee) ∈ RlΘaaa∩Zn

∣∣∣∣∣∣
∑

eee∈lΘaaa∩Zn

x2
eee(

l+n
n

)( l
eeeel

)
aaaeeeel ≤ 1

 ,

then, by Proposition 1.3,

#

φ ∈
⊕

eee∈lΘaaa∩Zn

Zzeee

∣∣∣∣∣∣ 〈φ, φ〉lgaaa ≤ 1

 = #(Kl ∩ ZlΘaaa∩Zn
).

On the other hand, for eee ∈ lΘaaa ∩ Zn,(
l + n

n

)(
l

ẽeel

)
aaaeeeel

=
1

〈zeee, zeee〉lgaaa

≥ exp(lϕaaa(ẽee
l/l)) ≥ 1.

Moreover, by Lemma 1.4, there are positive constants A and B such that∣∣∣∣log
((

l + n

n

)(
l

ẽeel

)
aaaeeeel
)
− lϕaaa(ẽee

l/l)
∣∣∣∣ ≤ A log l +B

holds for all l ∈ Z≥1 and eee ∈ lΘaaa ∩ Zn. Thus the assertion follows from Lemma 2.2. �

Next let us see the following claim:

Claim 2.3.2. If s, t ∈ R>0 and α, β ∈ R with α+ β 6= 0, then

αDtaaa + βDsaaa = (α+ β)D
(tαsβ)

1
α+β aaa

.

Proof. This is a straightforward calculation. �
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(2) and (3): First of all, ωaaa is positive by Proposition 1.1. Let γi be a 1-dimensional
closed subscheme given by H0 ∩ · · · ∩Hi−1 ∩Hi+1 ∩ · · · ∩Hn. Then it is easy to see that
d̂eg(Daaa

∣∣
γi

) = (1/2) log(aaa(i)). Therefore we have “only if” part of (1) and (2).
We assume that aaa(i) > 1 for all i. Then ϕaaa is positive on

{(x0, . . . , xn) ∈ Rn+1
≥0 | x0 + · · · + xn = 1}.

Thus, for eee ∈ Zn
≥0 with |eee| ≤ 1, zeee is a strictly small section by Proposition 1.3, which

shows that Daaa is ample.
Next we assume that aaa(i) ≥ 1 for all i. Let γ be a 1-dimensional closed integral sub-

scheme of Pn
Z. Then we can find Hi such that γ 6⊆ Hi. Note that

Daaa + (̂zi) = (Hi, log(aaa(0)|w0|2 + · · · + aaa(n)|wn|2)),

where wk = Tk/Ti (k = 0, . . . , n). Therefore d̂eg(Daaa

∣∣
γ
) ≥ 0 because

log(aaa(0)|w0|2 + · · · + aaa(n)|wn|2) ≥ 0.

(6): In this case, Θaaa = {(aaa(1), . . . , aaa(n))} and ϕaaa(aaa) = 0 by Lemma 1.2. Moreover,
if laaa ∈ Zn+1, then

‖zl(aaa(1),...,aaa(n))‖2
lgaaa

= exp(−lϕaaa(aaa)) = 1

by Proposition 1.3. Thus the assertion follows from Proposition 1.5.

(4) and (5): By using (6), in order to see (4) and (5), it is sufficient to show the follow-
ing:

(i) Daaa is big if |aaa| > 1.
(ii) Daaa is pseudo-effective if |aaa| ≥ 1.

(iii) Daaa is not pseudo-effective if |aaa| < 1.

(i) It follows from Claim 2.3.1 because vol(Θaaa) > 0.

(ii) We choose a real number t such that t > 1 and Dtaaa is ample. By Claim 2.3.2,

Daaa + εDtaaa = (1 + ε)D
t

ε
1+ε aaa

.

For any ε > 0, since t
ε

1+ε |aaa| > 1, (1 + ε)D
t

ε
1+ε aaa

is big by (i), which shows that Daaa is
pseudo-effective.

(iii) Let us choose a positive real number t such that Dtaaa is ample. We also choose a
positive number ε such that if we set aaa′ = t

ε
1+εaaa, then |aaa′| < 1. We assume that Daaa is

pseudo-effective. Then
Daaa + εDtaaa = (1 + ε)Daaa′

is big by [9, Proposition 6.3.2], which means thatDaaa′ is big. On the other hand, as |aaa′| < 1,
we have Θaaa′ = ∅. Thus Ĥ0(Pn

Z, nDaaa′) = {0} for all n ≥ 1 by Proposition 1.5. This is a
contradiction.

(1): For the first formula, we may assume that |aaa| ≤ 1 by Claim 2.3.1. In this case, Daaa

is not big by (4) and Θaaa is either ∅ or {(a1, . . . , an)}. Thus the assertion follows. For the
second formula, the arithmetic Hilbert-Samuel formula (cf. [4] and [1]) yields

d̂eg(Dn+1
aaa )

(n+ 1)!
= lim

l→∞

χ̂
(
H0(Pn

Z, lH0), 〈 , 〉lga

)
ln+1

.
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On the other hand,

χ̂
(
H0(Pn

Z, lH0), 〈 , 〉lga

)
=

∑
eee∈l∆n∩Zn

log

(√(
l + n

n

)(
l

ẽeel

)
aaaeeeel

)
+ log V#(l∆n∩Zn).

Thus, in the same way as the proof of Lemma 2.2 and Claim 2.3.1, we can see the second
formula.

(7): It follows from (1) and (3). �

Finally let us consider the following proposition:

Proposition 2.4. For any positive integer l, there exists aaa ∈ Qn+1
>0 such that |aaa| > 1 and

that Ĥ0(Pn
Z, kDaaa) = {0} for k = 1, . . . , l.

Proof. Let us choose positive rational numbers a′1, . . . , a
′
n such that a′1 + · · ·+a′n < 1 and

a′1 < 1/l, . . . , a′n < 1/l. We set a′0 = 1− a′1 − · · · − a′n and aaa′ = (a′0, . . . , a
′
n). Moreover,

for a rational number λ > 1, we set

Kλ = {xxx ∈ ∆n | ϕaaa′(x̃xx) + log λ ≥ 0},
where ∆n = {(x1, . . . , xn) ∈ Rn

≥0 | x1 + · · · + xn ≤ 1}.

Claim 2.4.1. We can find a rational number λ > 1 such that Kλ ⊆ (0, 1/l)n.

Proof. We assume that K1+(1/m) 6⊆ (0, 1/l)n for all m ∈ Z≥1, that is, we can find xxxm ∈
K1+(1/m)\(0, 1/l)n for eachm ≥ 1. Since ∆n is compact, there is a subsequence {xxxmi} of
{xxxm} such that xxx = limi→∞xxxmi exists. Note that xxx 6∈ (0, 1/l)n because xxxmi 6∈ (0, 1/l)n

for all i. On the other hand, since ϕaaa′(x̃xxmi) + log(1 + (1/mi)) ≥ 0 for all i, we have
ϕaaa′(x̃xx) ≥ 0, and hence xxx = (a′1, . . . , a

′
n) by Lemma 1.2. This is a contradiction. �

We choose a rational number λ > 1 as in the above claim. Here we set aaa = λaaa′. Then,
as ϕaaa = ϕaaa′ + log λ, we have Θaaa ⊆ (0, 1/l)n. We assume that Ĥ0(Pn

Z, kDaaa) 6= {0} for
some k with 1 ≤ k ≤ l. Then, by Proposition 1.5, there is eee = (e1, . . . , en) ∈ kΘaaa ∩ Zn,
that is, eee/k ∈ Θaaa. Thus 0 < ei/k < 1/l for all i. This is a contradiction. �

3. ASYMPTOTIC MULTIPLICITY

Let X be a d-dimensional, projective, generically smooth and normal arithmetic variety.
Let D be an arithmetic R-divisor of C0-type on X . We set

N(D) =
{
l ∈ Z>0 | Ĥ0(X, lD) 6= {0}

}
.

We assume that N(D) 6= ∅. Then µx(D) for x ∈ X is defined to be

µx(D) := inf
{

multx(D + (1/l)(φ)) | l ∈ N(D), φ ∈ Ĥ0(X, lD) \ {0}
}
,

which is called the asymptotic multiplicity of D at x. The following proposition is the
fundamental properties of the asymptotic multiplicity.

Proposition 3.1 ([9, Proposition 6.5.2 and Proposition 6.5.3]). Let D and E be arithmetic
R-divisors of C0-type such that N(D) 6= ∅ and N(E) 6= ∅. Then we have the following:

(1) µx(D + E) ≤ µx(D) + µx(E).
(2) If D ≤ E, then µx(E) ≤ µx(D) + multx(E −D).
(3) µx(D + (̂φ)) = µx(D) for φ ∈ Rat(X)×.
(4) µx(aD) = aµx(D) for a ∈ Q>0.
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(5) If D is nef and big, then µx(D) = 0.

Moreover, we have the following lemma.

Lemma 3.2. For each l ∈ N(D), let {φl,1, . . . , φl,rl
} be a subset of Ĥ0(X, lD)\{0} such

that Ĥ0(X, lD) ⊆ 〈φl,1, . . . , φl,rl
〉Z. Let x be a point of X such that the Zariski closure

{x} of {x} is flat over Z. Then

µx(D) = inf{multx (D + (1/l)(φl,i)) | l ∈ N(D), i = 1, . . . , rl}.
Proof. Clearly

µx(D) ≤ inf{multx (D + (1/l)(φl,i)) | l ∈ N(D), i = 1, . . . , rl}.

Let us consider the converse inequality. For l ∈ N(D) and φ ∈ Ĥ0(X, lD) \ {0}, we set
φ =

∑rl
i=1 ciφl,i for some c1, . . . , crl

∈ Z. Note that

multx((φ+ ψ)) ≥ min{multx((φ)),multx((ψ))} and multx((a)) = 0

for φ, ψ ∈ Rat(X)× and a ∈ Q× with φ+ ψ 6= 0. Thus we can find i such that

multx((φ)) ≥ multx((φl,i)),

and hence the converse inequality holds. �

4. ZARISKI DECOMPOSITION OF Daaa ON P1
Z

We use the same notation as in Section 1. We assume n = 1. In this section, we
consider the Zariski decomposition of Daaa on P1

Z = Proj(Z[T0, T1]). Note that Θaaa is a
closed interval in [0, 1]. For simplicity, we denote the affine coordinate z1 by z, that is,
z = T1/T0.

Theorem 4.1. The Zariski decomposition ofDaaa exists if and only if a0+a1 ≥ 1. Moreover,
if we set ϑaaa = inf Θaaa, θaaa = supΘaaa, Paaa = θaaaH0 − ϑaaaH1 and

paaa(z) =


ϑaaa log |z|2 if |z| <

√
a0ϑaaa

a1(1−ϑaaa) ,

log(a0 + a1|z|2) if
√

a0ϑaaa
a1(1−ϑaaa) ≤ |z| ≤

√
a0θaaa

a1(1−θaaa) ,

θaaa log |z|2 if |z| >
√

a0θaaa
a1(1−θaaa) ,

then the positive part of Daaa is Paaa = (Paaa, paaa), where
√

a0θaaa
a1(1−θaaa) is treated as ∞ if θaaa = 1.

Proof. First we consider the case where Daaa is big, that is, a0 + a1 > 1 by Theorem 2.3. In
this case, 0 ≤ ϑaaa < θaaa ≤ 1. The existence of the Zariski decomposition follows from [9,
Theorem 9.2.1]. Here we consider functions

r1 :

{
z ∈ P1(C)

∣∣∣∣∣ |z| <
√

a0θaaa
a1(1 − θaaa)

}
→ R

and

r2 :

{
z ∈ P1(C)

∣∣∣∣∣ |z| >
√

a0ϑaaa

a1(1 − ϑaaa)

}
→ R

given by

r1(z) =

0 if |z| <
√

a0ϑaaa
a1(1−ϑaaa) ,

−ϑaaa log |z|2 + log(a0 + a1|z|2) if
√

a0ϑaaa
a1(1−ϑaaa) ≤ |z| <

√
a0θaaa

a1(1−θaaa) .
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and

r2(z) =

−θaaa log |z|2 + log(a0 + a1|z|2) if
√

a0ϑaaa
a1(1−ϑaaa) < |z| ≤

√
a0θaaa

a1(1−θaaa) ,

0 if |z| >
√

a0θaaa
a1(1−θaaa) .

In order to see that paaa is a Paaa-Green function of (C0 ∩PSH)-type on P1(C), it is sufficient
to check that r1 and r2 are continuous and subharmonic on each area. Let us see that
r1 is continuous and subharmonic. If ϑaaa = 0, then the assertion is obvious, so that we
may assume that ϑaaa > 0. First of all, as ϕaaa(1 − ϑaaa, ϑaaa) = 0, we have r1(z) = 0 if

|z| =
√

a0ϑaaa
a1(1−ϑaaa) , and hence r1 is continuous. It is obvious that r1 is subharmonic on{

z ∈ C

∣∣∣∣∣ |z| <
√

a0ϑaaa

a1(1 − ϑaaa)

}
∪

{
z ∈ C

∣∣∣∣∣
√

a0ϑaaa

a1(1 − ϑaaa)
< |z| <

√
a0θaaa

a1(1 − θaaa)

}
.

By using Claim 1.2.1,

ϑaaa log |z|2 = (1 − ϑaaa) log(1) + ϑaaa log |z|2

≤ log(a0 + a1|z|2) + ϕaaa(1 − ϑaaa, ϑaaa) = log(a0 + a1|z|2).

Thus r1 ≥ 0. Therefore, if |z| =
√

a0ϑaaa
a1(1−ϑaaa) , then

r1(z) = 0 ≤ 1
2π

∫ 2π

0
r1(z + εe

√
−1t)dt

for a small positive real number ε, and hence r1 is subharmonic. In the similar way, we can
check that r2 is continuous and subharmonic.

Next let us see that Paaa is nef. As r1(0) = 0 and r2(∞) = 0, we have

d̂eg(Paaa

∣∣
H0

) = d̂eg(Paaa

∣∣
H1

) = 0.

Note that
Paaa + ϑaaa(̂z) = ((θaaa − ϑaaa)H0, paaa(z) − ϑaaa log |z|2)

and

paaa(z) − ϑaaa log |z|2 =

r1(z) if |z| ≤
√

a0θaaa
a1(1−θaaa) ,

(θaaa − ϑaaa) log |z|2 if |z| >
√

a0θaaa
a1(1−θaaa) .

Therefore, paaa(z) − ϑaaa log |z|2 ≥ 0 on P1(C), which means that Paaa + ϑaaa(̂z) is effective.
Let γ be a 1-dimensional closed integral subscheme of P1

Z with γ 6= H0, H1. Then

d̂eg(Paaa

∣∣
γ
) = d̂eg(((θaaa − ϑaaa)H0, paaa − ϑaaa log |z|2)

∣∣
γ
) ≥ 0.

By using Proposition 1.5, we have µH0(Daaa) = 1 − θaaa and µH1(Daaa) = ϑaaa. Thus the
positive part of Daaa can be written by a form (Paaa, q), where q is a Paaa-Green function of
(C0 ∩ PSH)-type on P1(C) (cf. [9, Claim 9.3.5.1 and Proposition 9.3.1]). Note that Paaa is
nef and Paaa ≤ Daaa, so that

paaa(z) ≤ q(z) ≤ log(a0 + a1|z|2).

We choose a continuous function u such that paaa + u = q. Then u(z) = 0 on√
a0ϑaaa

a1(1 − ϑaaa)
≤ |z| ≤

√
a0θaaa

a1(1 − θaaa)
.
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Moreover, since q(z) = ϑaaa log |z|2 + u(z) on |z| ≤
√

a0ϑaaa
a1(1−ϑaaa) , u is subharmonic on

|z| ≤
√

a0ϑaaa
a1(1−ϑaaa) . On the other hand, u(0) = 0 because

d̂eg((Paaa, q)|H1
) = u(0) = 0.

Therefore, u = 0 on |z| ≤
√

a0ϑaaa
a1(1−ϑaaa) by the maximal principle. In a similar way, we can

see that u = 0 on |z| ≥
√

a0θaaa
a1(1−θaaa) .

Next we consider the case where a0 + a1 = 1. By Claim 1.2.1,

a1 log |z|2 ≤ log(a0 + a1|z|2)

on P1(C). Thus −a1(̂z) ≤ Daaa, and hence the Zariski decomposition of Daaa exists by [9,
Theorem 9.2.1]. Let P be the positive part of Daaa. Then −a1(̂z) ≤ P .

Let us consider the converse inequality. Let t be a real number with t > 1. Since
P ≤ Daaa ≤ Dtaaa, we have P ≤ P taaa because P taaa is the positive part of Dtaaa by the previous
observation. Since ϕtaaa = ϕaaa + log(t), we have limt→1 ϑtaaa = limt→1 θtaaa = a1. Therefore,
we can see

lim
t→1

P taaa = Paaa = −a1(̂z).

Thus P ≤ −a1(̂z).

Finally we consider the case where a0 + a1 < 1. Then, by Theorem 2.3, Daaa is not
pseudo-effective. Thus the Zariski decomposition does not exist by [9, Proposition 9.3.2].

�

5. WEAK ZARISKI DECOMPOSITION OF Daaa

Let X be a d-dimensional, projective, generically smooth and normal arithmetic variety.
Let D be a big arithmetic R-divisor of C0-type on X . A decomposition D = P + N is
called a weak Zariski decomposition of D if the following conditions are satisfied:

(1) P is a nef and big arithmetic R-divisor of (C0 ∩ PSH)-type.
(2) N is an effective arithmetic R-divisor of C0-type.
(3) multΓ(N) ≤ µΓ(D) for any horizontal prime divisor Γ on X , that is, Γ is a

reduced and irreducible divisor Γ on X such that Γ is flat over Z.

Note that the Zariski decomposition of a big arithmetic R-divisor of C0-type on an arith-
metic surface is a weak Zariski decomposition (cf. [9, Claim 9.3.5.1]). The above property
(3) implies that multΓ(N) = µΓ(D) for any horizontal prime divisor Γ on X . Indeed, by
(2) and (5) in Proposition 3.1,

µΓ(D) ≤ µΓ(P ) + multΓ(N) = multΓ(N) ≤ µΓ(D).

From now on, we use the same notation as in Section 1. Let us begin with the following
lemma.

Lemma 5.1. Let f : X → Pn
Z and g : Y → X be birational morphisms of projective,

generically smooth and normal arithmetic varieties. If f∗(Daaa) admits a weak Zariski
decomposition, then g∗(f∗(Daaa)) also admits a weak Zariski decomposition.



18 ATSUSHI MORIWAKI

Proof. Let f∗(Daaa) = P + N be a weak Zariski decomposition of f∗(Daaa). We denote
birational morphisms XQ → Pn

Q and YQ → XQ by fQ and gQ respectively. We set

Θ̃aaa = {ẽ ∈ Rn+1 | e ∈ Θaaa},
f∗Q(Hi) =

∑
j aijDj for i = 0, . . . , n and N =

∑
j bjDj on XQ, where Dj’s are reduced

and irreducible divisors on XQ. Since

lH0 + (zeee) = (l − eee(1) − · · · − eee(n))H0 + eee(1)H1 + · · · + eee(n)Hn

for eee ∈ lΘaaa ∩ Zn, by Lemma 3.2, we have

µDj (f
∗(Daaa)) = min

{
n∑

i=0

xiaij

∣∣∣∣∣ (x0, . . . , xn) ∈ Θ̃aaa

}
.

Thus

bj ≤ min

{
n∑

i=0

xiaij

∣∣∣∣∣ (x0, . . . , xn) ∈ Θ̃aaa

}
.

for all j.
Here let us see that g∗(f∗(Daaa)) = g∗(P ) + g∗(N) is a weak Zariski decomposition.

For this purpose, it is sufficient to see that multΓ(g∗(N)) ≤ µΓ(g∗(f∗(Daaa))) for any
horizontal prime divisor Γ on Y . If we set cj = multΓ(g∗Q(Dj)), then

di := multΓ(g∗Q(f∗Q(Hi))) =
∑

j

aijcj .

For (x0, . . . , xn) ∈ Θ̃aaa,∑
i

xidi =
∑

j

(∑
i

xiaij

)
cj ≥

∑
j

bjcj = multΓ(g∗Q(N)),

which yields µΓ(g∗(f∗(Daaa))) ≥ multΓ(g∗(N)). �
Next let us consider the following lemma:

Lemma 5.2. Let Θ be a compact convex set in Rn and p : Rn → Rn−1 the projection
given by p(x1, . . . , xn) = (x1, . . . , xn−1). Then p(Θ) is a compact convex set in Rn−1 and
there exist a concave function θ on p(Θ) and a convex function ϑ on p(Θ) such that

Θ =
{

(x1, . . . , xn−1, xn) ∈ Rn

∣∣∣∣ (x1, . . . , xn−1) ∈ p(Θ),
ϑ(x1, . . . , xn−1) ≤ xn ≤ θ(x1, . . . , xn−1)

}
.

Proof. Obviously p(Θ) is a compact convex set in Rn−1. For (x1, . . . , xn−1) ∈ p(Θ), we
set {

θ(x1, . . . , xn−1) := max{xn ∈ R | (x1, . . . , xn−1, xn) ∈ Θ},
ϑ(x1, . . . , xn−1) := min{xn ∈ R | (x1, . . . , xn−1, xn) ∈ Θ}.

Clearly

Θ =
{

(x1, . . . , xn−1, xn) ∈ Rn

∣∣∣∣ (x1, . . . , xn−1) ∈ p(Θ),
ϑ(x1, . . . , xn−1) ≤ xn ≤ θ(x1, . . . , xn−1)

}
.

We need to show that θ (resp. ϑ) is a concave (resp. convex) function. Since

(x1, . . . , xn−1, θ(x1, . . . , xn−1)), (x′1, . . . , x
′
n−1, θ(x

′
1, . . . , x

′
n−1)) ∈ Θ

for (x1, . . . , xn−1), (x′1, . . . , x
′
n−1) ∈ p(Θ), we have

λ(x1, . . . , xn−1, θ(x1, . . . , xn−1)) + (1 − λ)(x′1, . . . , x
′
n−1, θ(x

′
1, . . . , x

′
n−1)) ∈ Θ
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for 0 ≤ λ ≤ 1, which shows that

λθ(x1, . . . , xn−1) + (1 − λ)θ(x′1, . . . , x
′
n−1)

≤ θ(λ(x1, . . . , xn−1) + (1 − λ)(x′1, . . . , x
′
n−1)).

Thus θ is concave. Similarly we can see that ϑ is convex. �
Remark 5.3. If p(Θ) is a polytope in Lemma 5.2, then θ and ϑ are continuous on p(Θ) (cf.
[3]). In general, θ and ϑ are not necessarily continuous on p(Θ). Indeed, let us consider
the following set:

Θ = {(x, y, z) ∈ R3 | 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, x2 ≤ yz}.
Since

x2 ≤ yz ⇐⇒ x2 +
(
y − z

2

)2

≤
(
y + z

2

)2

,

we can easily see that Θ is a compact convex set in R3. Let p : R3 → R2 be the projection
given by p(x, y, z) = (x, y). Then

p(Θ) = {(x, y) ∈ R2 | x2 ≤ y ≤ 1}.
Moreover, ϑ is given by

ϑ(x, y) =

{
x2/y if (x, y) 6= (0, 0),
0 if (x, y) = (0, 0),

and hence ϑ is not continuous at (0, 0).

Note that Θaaa is a compact convex set of Rn. We say a hyperplane α1x1+· · ·+αnxn = β
in Rn is a supporting hyperplane of Θaaa at (b1, . . . , bn) ∈ Θaaa if

Θaaa ⊆ {α1x1 + · · · + αnxn ≥ β} and α1b1 + · · · + αnbn = β.

Proposition 5.4. Let (b1, . . . , bn) ∈ ∂(Θaaa), that is, (b1, . . . , bn) is a boundary point of Θaaa.
We set b0 = 1 − b1 − · · · − bn. We assume

a0 + a1 + · · · + an > 1 and #{i | 0 ≤ i ≤ n, bi = 0} ≤ 1.

Then Θaaa has a unique supporting hyperplane at (b1, . . . , bn). Moreover, in the case where
bi = 0, the supporting hyperplane is given by{

x1 + · · · + xn = 1 if b0 = 0,
xi = 0 if bi = 0 for some i with 1 ≤ i ≤ n.

Proof. Here we set

φaaa(x1, . . . , xn) = ϕaaa(1 − x1 − · · · − xn, x1, . . . , xn)

on ∆n = {(x1, . . . , xn) ∈ Rn
≥0 | x1 + · · · + xn ≤ 1}. Then

Θaaa = {(x1, . . . , xn) ∈ ∆n | φaaa(x1, . . . , xn) ≥ 0}.

First we assume that (b1, . . . , bn) 6∈ ∂(∆n). Then φaaa(b1, . . . , bn) = 0. Note that, for
(x1, . . . , xn) ∈ ∆n \ ∂(∆n),

(φaaa)x1(x1, . . . , xn) = · · · = (φaaa)xn(x1, . . . , xn) = 0 ⇐⇒

(x1, . . . , xn) =
(

a1

a0 + · · · + an
, . . . ,

an

a0 + · · · + an

)
,
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and φaaa

(
a1

a0+···+an
, . . . , an

a0+···+an

)
= log(a0 + · · · + an) > 0. Thus we have

((φaaa)x1(b1, . . . , bn), . . . , (φaaa)x1(b1, . . . , bn)) 6= (0, . . . , 0),

which means that Θaaa has a unique supporting hyperplane at (b1, . . . , bn).

Next we assume that (b1, . . . , bn) ∈ ∂(∆n). Considering the following linear transfor-
mations: 

x′1 = x1,

...
...

x′n−1 = xn−1,

x′n = 1 − x1 − · · · − xn,



x′1 = x1,

...
...

x′i = xn,

...
...

x′n = xi,

we may assume bn = 0. Note that (b1, . . . , bn−1) ∈ ∆n−1 \∂(∆n−1). Let p : Rn → Rn−1

be the projection given by p(x1, . . . , xn) = (x1, . . . , xn−1). By Lemma 5.2, there are a
concave function θ on p(Θaaa) and a convex function ϑ on p(Θaaa) such that

Θaaa =
{

(x1, . . . , xn−1, xn)
∣∣∣∣ (x1, . . . , xn−1) ∈ p(Θaaa),
ϑ(x1, . . . , xn−1) ≤ xn ≤ θ(x1, . . . , xn−1)

}
.

Claim 5.4.1. (b1, . . . , bn−1) is an interior point of p(Θaaa). In particular, ϑ is continuous
around (b1, . . . , bn−1) (cf. [5, Theorem 2.2]).

Proof. Let us consider a function ψ : [0, 1 − b1 − · · · − bn−1] → R given by ψ(t) =
φaaa(b1, . . . , bn−1, t). Note that

ψ′(t) = log
an

a0

(
1 − b1 − · · · − bn−1

t
− 1
)
> 0

on
(
0, an(1−b1−···−bn−1)

a0+an

)
. Thus

φaaa

(
b1, . . . , bn−1,

an(1 − b1 − · · · − bn−1)
a0 + an

)
> φaaa(b1, . . . , bn−1, 0) ≥ 0.

Therefore, as
(
b1, . . . , bn−1,

an(1−b1−···−bn−1)
a0+an

)
∈ ∆n \ ∂(∆n), we can find a sufficiently

small positive number ε such that
n−1∏
i=1

(bi − ε, bi + ε) ×
(
an(1 − b1 − · · · − bn−1)

a0 + an
− ε,

an(1 − b1 − · · · − bn−1)
a0 + an

+ ε

)
is a subset of Θaaa, and hence

(b1, . . . , bn−1) ∈
n−1∏
i=1

(bi − ε, bi + ε) ⊆ p(Θaaa).

�

We set aaa′ = (a0, . . . , an−1). Then

Θaaa′ = {(x1, . . . , xn−1) ∈ Rn−1 | (x1, . . . , xn−1, 0) ∈ Θaaa}.

Clearly (b1, . . . , bn−1) ∈ Θaaa′ and ϑ ≡ 0 on Θaaa′ .



BIG ARITHMETIC DIVISORS ON THE PROJECTIVE SPACES OVER Z 21

Claim 5.4.2. ϑ is a continuously differentiable function around (b1, . . . , bn−1) such that

ϑx1(b1, . . . , bn−1) = · · · = ϑxn−1(b1, . . . , bn−1) = 0.

Proof. By Claim 5.4.1, there is a positive number ε such that

b1 − ε > 0, . . . , bn−1 − ε > 0, (b1 + ε) + · · · + (bn−1 + ε) < 1

and ϑ is continuous on U =
∏n−1

i=1 (bi − ε, bi + ε). If (x1, . . . , xn−1) ∈ U \ Θaaa′ , then
ϑ(x1, . . . , xn−1) > 0, and hence

φaaa(x1, . . . , xn−1, ϑ(x1, . . . , xn−1)) = 0

for (x1, . . . , xn−1) ∈ U \ Θaaa′ . Note that

(5.4.3) (φaaa)xi = log
ai

a0

(
1 − x1 − · · · − xn

xi

)
.

Since ϑ(b1, . . . , bn−1) = 0 and ϑ is continuous at (b1, . . . , bn−1), choosing a smaller ε if
necessarily, we may assume that

(φaaa)xn(x1, . . . , xn−1, ϑ(x1, . . . , xn−1)) > 0

for all (x1, . . . , xn−1) ∈ U \Θaaa′ . Thus, by using the implicit function theorem, ϑ is a C∞

function on U \ Θaaa′ and

(5.4.4) ϑxi(x1, . . . , xn−1) = − (φaaa)xi(x1, . . . , xn−1, ϑ(x1, . . . , xn−1))
(φaaa)xn(x1, . . . , xn−1, ϑ(x1, . . . , xn−1))

.

Let us consider a function γi on U given by

γi(x1, . . . , xn−1) =

{
0 if (x1, . . . , xn−1) ∈ U ∩ Θaaa′ ,

ϑxi(x1, . . . , xn−1) if (x1, . . . , xn−1) ∈ U \ Θaaa′ .

Then, by using (5.4.3) and (5.4.4), it is easy to see that γi is continuous on U . Thus the
claim follows. �

The above claim shows that Θaaa has the unique supporting hyperplane at (b1, . . . , bn)
and it is given by xn = 0. �

Corollary 5.5. We assume that a0 < 1 and a0 +a1 + · · ·+an ≥ 1. Let α1, . . . , αn ∈ R>0

and (b1, . . . , bn) ∈ Θaaa such that

α1b1 + · · · + αnbn = min{α1x1 + · · · + αnxn | (x1, . . . , xn) ∈ Θaaa}.

Then (b1, . . . , bn) 6∈ ∂(∆n).

Proof. We prove it by induction on n. If n = 1, then the assertion is obvious, so that we
may assume n > 1. If a0 + · · · + an = 1, then

Θaaa =
{(

a1

a0 + · · · + an
, . . . ,

an

a0 + · · · + an

)}
.

In this case, the assertion is also obvious. Thus we may assume that a0 + · · · + an > 1.
We assume that bi = 0 for some 1 ≤ i ≤ n. Then, since Θaaa ∩ {xi = 0} 6= ∅, we have

a1 + · · · + ai−1 + ai+1 + · · · + an ≥ 1.

Thus, by the hypothesis of induction,

b1 6= 0, . . . , bi−1 6= 0, bi+1 6= 0, . . . , bn 6= 0, b1 + · · · + bn 6= 1.
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Therefore, by Proposition 5.4, we have the unique supporting hyperplane xi = 0 of Θaaa

at (b1, . . . , bn). On the other hand, α1x1 + · · · + αnxn = α1b1 + · · · + αnbn is also a
supporting hyperplane of Θaaa at (b1, . . . , bn). This is a contradiction.

Next we assume that b1 + · · · + bn = 1. Since bi 6= 0 for all i, by Proposition 5.4, the
unique supporting hyperplane of Θaaa at (b1, . . . , bn) is x1 + · · · + xn = 1, which yields
α1 = · · · = αn, and hence Θaaa ⊆ {x1 + · · · + xn = 1}. This is a contradiction because(

a1

a0 + · · · + an
, . . . ,

an

a0 + · · · + an

)
∈ Θaaa,

as required. �

Theorem 5.6. We assume that n ≥ 2 and Daaa is big. Then Daaa is nef if and only if there is a
birational morphism f : X → Pn

Z of projective, generically smooth and normal arithmetic
varieties such that f∗(Daaa) admits a weak Zariski decomposition on X .

Proof. If Daaa is nef, then Daaa = Daaa + (0, 0) is a weak Zariski decomposition. Next we
assume that Daaa is not nef and there is a birational morphism f : X → Pn

Z of projective,
generically smooth and normal arithmetic varieties such that f∗(Daaa) admits a weak Zariski
decomposition f∗(Daaa) = P +N onX . By our assumptions, a0 + · · ·+an > 1 and ai < 1
for some i. Renumbering the homogeneous coordinate T0, . . . , Tn, we may assume a0 < 1.
Let ξ be the generic point of H1 ∩ · · · ∩ Hn, that is, ξ = (1 : 0 : · · · : 0) ∈ Pn(Q). Let
Li be the strict transform of Hi by f for i = 0, . . . , n. We denote the birational morphism
XQ → Pn

Q by fQ. Let f ′ : X ′ → Pn
Z be the blowing-up along H1 ∩ · · · ∩ Hn. By using

Lemma 5.1 and [7], we may assume the following:
(1) Let Σ be the exceptional set of fQ : XQ → Pn

Q. Then Σ is a divisor on XQ and
(Σ + (L0)Q + · · · + (Ln)Q)red is a normal crossing divisor on XQ.

(2) There is a birational morphism g : X → X ′ such that the following diagram is
commutative:

X
g

!!B
BB

BB
BB

B

f

��

X ′

f ′~~}}
}}

}}
}}

Pn
Z

Claim 5.6.1. There are ξ′ ∈ X(Q) and a reduced and irreducible divisor E on XQ with
the following properties:

(a) fQ(ξ′) = ξ and ξ′ ∈ E ∩ (Ln)Q.
(b) E and (Ln)Q is non-singular at ξ′.
(c) E is exceptional with respect to fQ : XQ → Pn

Q.
(d) There are positive integers α1, . . . , αn such that

f∗Q(Hi) = αiE + (the sum of divisors which do not pass through ξ′)

for i = 1, . . . , n− 1 and

f∗Q(Hn) = (Ln)Q + αnE + (the sum of divisors which do not pass through ξ′).

Proof. Let L′
n be the strict transform of Hn by f ′ and Σ′ the exceptional set of f ′Q : X ′

Q →
Pn

Q. Then Σ′ = Pn−1
Q and D′ := (L′

n)Q ∩ Σ′ = Pn−2
Q . Let h : Ln → L′

n and hQ :
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(Ln)Q → (L′
n)Q be the birational morphisms induced by g : X → X ′ and gQ : XQ → X ′

Q
respectively. Let D be the strict transformation of D′ by hQ. As before, let Σ be the
exceptional set of fQ : XQ → Pn

Q. Let

(Σ + (L0)Q + · · · + (Ln)Q)red = (L0)Q + · · · + (Ln)Q + E0 + · · · + El

be the irreducible decomposition such that Ei’s are exceptional with respect to fQ. Since
D ⊆ (Ln)Q ∩ Σ, there is Ei such that D ⊆ (Ln)Q ∩ Ei. Renumbering E0, . . . , El, we
may assume that Ei = El. As (L0)Q + · · ·+ (Ln)Q +E0 + · · ·+El is a normal crossing
divisor on XQ, we have

D ∩ Sing((Ln)Q) ( D, D ∩ Sing(E) ( D,

D ∩ (Li)Q ( D (i = 0, . . . , n− 1),
D ∩ Ej ( D (j = 0, . . . , l − 1).

Note that D(Q) is dense in D because D → D′ is birational. Thus we can find ξ′ ∈ D(Q)
such that

ξ′ 6∈ (D ∩ Sing((Ln)Q)) ∪ (D ∩ Sing(E)) ∪
n−1∪
i=0

(D ∩ (Li)Q) ∪
l−1∪
j=0

(D ∩Ej).

Therefore the claim follows. �
Note that

f∗Q(lH0 + (ze1
1 · · · zen

n )) = f∗Q((l − e1 − · · · − en)H0 + e1H1 + · · · + enHn)

= en(Ln)Q + (α1e1 + · · · + αnen)E

+ (the sum of divisors which do not pass through ξ′).

Therefore, by Lemma 3.2,
µξ′(f∗(Daaa)) = min{α1x1 + · · · + αn−1xn−1 + (αn + 1)xn | (x1, · · · , xn) ∈ Θaaa},
µE(f∗(Daaa)) = min{α1x1 + · · · + αnxn | (x1, · · · , xn) ∈ Θaaa},
µLn(f∗(Daaa)) = min{xn | (x1, . . . , xn) ∈ Θaaa}.

Further,

multξ′(N) = multE(N) + multLn(N) ≤ µE(f∗(Daaa)) + µLn(f∗(Daaa)).

By (2) and (5) in Proposition 3.1,

0 = µξ′(P ) ≥ µξ′(f∗(Daaa)) − multξ′(N).

Therefore, if we set
A = min{α1x1 + · · · + αn−1xn−1 + (αn + 1)xn | (x1, · · · , xn) ∈ Θaaa},
B = min{α1x1 + · · · + αnxn | (x1, · · · , xn) ∈ Θaaa},
C = min{xn | (x1, . . . , xn) ∈ Θaaa},

then we have 0 ≥ A−B − C. We choose (b1, . . . , bn) ∈ Θaaa such that

A = α1b1 + · · · + αn−1bn−1 + (αn + 1)bn.

Thus, as α1b1 + · · · + αnbn ≥ B and bn ≥ C, we have

0 ≥ A−B − C

≥ α1b1 + · · · + αn−1bn−1 + (αn + 1)bn − (α1b1 + · · · + αnbn) − bn = 0,
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which implies α1b1 + · · · + αnbn = B and bn = C. On the other hand, by Corol-
lary 5.5, (b1, . . . , bn) 6∈ ∂(∆n), and hence there is a unique supporting hyperplane of Θaaa

at (b1, . . . , bn) by Proposition 5.4. This is a contradiction because
α1x1 + · · · + αn−1xn−1 + (αn + 1)xn = A,

α1x1 + · · · + αn−1xn−1 + αnxn = B,

xn = C

are distinct supporting hyperplanes of Θaaa at (b1, . . . , bn). �

6. FUJITA’S APPROXIMATION OF Daaa

Fujita’s approximation of arithmetic divisors has established by Chen and Yuan (cf. [2],
[10], [8] and [9]). In this section, we consider Fujita’s approximation of Daaa in terms of
rational interior points of Θaaa.

First of all, we fix notation. Let xxx1, . . . ,xxxr ∈ Rn and φ1, . . . , φr ∈ R. We define a
function φ(xxx1,φ1),...,(xxxr,φr) on Θ = Conv{xxx1, . . . ,xxxr} to be

φ(xxx1,φ1),...,(xxxr,φr)(xxx) := max

{
r∑

i=1

λiφi

∣∣∣∣ xxx =
∑r

i=1 λixxxi,
λ1, . . . , λr ∈ R≥0,

∑r
i=1 λi = 1

}
.

In other words, φ(xxx1,φ1),...,(xxxr,φr) is given by

φ(xxx1,φ1),...,(xxxr,φr)(xxx) = max{φ ∈ R | (xxx, φ) ∈ Conv{(xxx1, φ1), . . . , (xxxr, φr)} ⊆ Rn × R}.
Thus we can easily see that φ(xxx1,φ1),...,(xxxr,φr) is a continuous function on Θ (cf. [3]).

Let ϕ be a continuous concave function on Θ. Clearly φ(xxx1,ϕ(xxx1)),...,(xxxr,ϕ(xxxr)) ≤ ϕ.
Moreover, for a positive number ε, if we add sufficiently many points xxxr+1, . . . ,xxxm ∈ Θ
to {xxx1, . . . ,xxxr}, then

ϕ− ε ≤ φ(xxx1,ϕ(xxx1)),...,(xxxr,ϕ(xxxr)),(xxxr+1,ϕ(xxxr+1)),...,(xxxm,ϕ(xxxm)) ≤ ϕ.

From now on, we use the same notation as in Section 1. We assume that Daaa is big.

Claim 6.1. For a given positive number ε, we can find rational interior points xxx1, . . . ,xxxr

of Θaaa, that is, xxx1, . . . ,xxxr ∈ Int(Θaaa) ∩ Qn such that

(n+ 1)!
2

∫
Θ
φ(xxx1,ϕaaa(exxx1)),...,(xxxr,ϕaaa(exxxr))(xxx)dxxx > v̂ol(Daaa) − ε,

where Θ = Conv{xxx1, . . . ,xxxr}.

Proof. First of all, we can find xxx1, . . . ,xxxr′ ∈ Int(Θaaa) ∩ Qn such that

(n+ 1)!
2

∫
Θ
ϕaaa(x̃xx)dxxx > v̂ol(Daaa) − ε,

where Θ = Conv{xxx1, . . . ,xxxr′}. Thus, adding more points xxxr′+1, . . . ,xxxr ∈ Θ ∩ Qn to
{xxx1, . . . ,xxxr′}, we have

(n+ 1)!
2

∫
Θ
φ(xxx1,ϕaaa(exxx1)),...,(xxxr,ϕaaa(exxxr))(xxx)dxxx > v̂ol(Daaa) − ε.

�

We choose a sufficiently small positive number δ such that
(a) Θ ⊆ Θe−δaaa and
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(b)
(n+ 1)!

2

∫
Θ
φ(xxx1,ϕ

e−δaaa
(exxx1)),...,(xxxr,ϕ

e−δaaa
(exxxr))(xxx)dxxx > v̂ol(Daaa) − ε.

We set aaa′ = e−δaaa. By virtue of [9, Theorem3.2.3], we can find positive integer l0 such that

(c) log dist(H0(lH0) ⊗ C; l0gaaa′) ≤ l0δ and
(d) l0xxx1, . . . , l0xxxr ∈ Zn

≥0.

Let us consider the following Z-module:

V :=
r⊕

i=1

Zzl0xxxi ⊆ H0(Pn
Z, l0H0).

Then we have a birational morphisms µ : Y → Pn
Z of projective, generically smooth and

normal arithmetic varieties such that the image of

V ⊗Z OY → OY (µ∗(l0H0))

is invertible, that is, there is an effective Cartier divisor F on Y such that

V ⊗Z OY → OY (µ∗(l0H0) − F )

is surjective. Here we set


Q := µ∗(l0H0) − F,

gF := µ∗ (− log dist(V ⊗ C; l0gaaa′) + l0δ) ,
gQ := µ∗ (l0gaaa′ + log dist(V ⊗ C; l0gaaa′)) .

Claim 6.2. (i) gQ + gF = µ∗(l0gaaa).
(ii) gQ is a Q-Green function of (C∞ ∩ PSH)-type and Q := (Q, gQ) is nef.

(iii) gF is an F -Green function of C∞-type and gF ≥ 0.
(iv) If we set P = (P, gP ) = (1/l0)Q, then, for eee ∈ lΘ ∩ Zn, µ∗(zeee) ∈ H0(lP ) and

|µ∗(zeee)|2lgP
≤ exp

(
−lφ(xxx1,ϕaaa′ (exxx1)),...,(xxxr,ϕaaa′ (exxxr))(eee/l)

)
.

Proof. (i) is obvious. (ii) is a consequence of Lemma 6.3 below. The first assertion of (iii)
follows from (i) and (ii), and the second follows from (c).

(iv) Let us consider arbitrary λ1, . . . , λr ∈ R such that eee/l = λ1xxx1 + · · · + λrxxxr and
λ1 + · · · + λr = 1. Then, since Q+ (µ∗(zl0xxxi)) ≥ 0 for all i,

lP + (µ∗(zeee)) = (l/l0)Q+
r∑

i=1

λi(l/l0)(µ∗(zl0xxxi))

=
r∑

i=1

λi(l/l0)
(
Q+ (µ∗(zl0xxxi))

)
≥ 0,
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and hence µ∗(zeee) ∈ H0(lP ). Moreover, by using [9, Proposition 3.2.1] and Proposi-
tion 1.3,

|µ∗(zeee)|2lgP
= |µ∗(zeee)|2 exp(−(l/l0)gQ)

=
r∏

i=1

(
|µ∗(zl0xxxi)|2

)λi(l/l0) exp(−lµ∗(gaaa′))
µ∗(dist(V ⊗ C; l0gaaa′))l/l0

=
r∏

i=1

µ∗

(
|zl0xxxi |2l0gaaa′

dist(V ⊗ C; l0gaaa′)

)λi(l/l0)

≤
r∏

i=1

(
‖zl0xxxi‖2

l0gaaa′

)λi(l/l0)

=
r∏

i=1

exp(−l0ϕaaa′(x̃xxi))λi(l/l0) = exp

(
−l

r∑
i=1

λiϕaaa′(x̃xxi)

)
.

Thus (iv) follows. �

Lemma 6.3. Let µ : Y → X be a birational morphism of projective, generically smooth
and normal arithmetic varieties. Let D be an arithmetic R-divisor of C0-type on X and
S a subset of Ĥ0(X,D). We assume that there is an effective R-divisor E on Y with the
following properties:

(1) µ∗(D) − E ∈ Div(Y ), that is, µ∗(D) − E is a Cartier divisor.
(2) µ∗(s) ∈ H0(Y, µ∗(D) −E) for all s ∈ S and∩

s∈S

Supp(µ∗(D) − E + (µ∗(s))) = ∅.

We set
M := µ∗(D) − E and gM := µ∗(g + log dist(〈S〉C; g)).

Then gM is an M -Green function of (C∞ ∩ PSH)-type and (M, gM ) is nef.

Proof. Let e1, . . . , eN be an orthonormal basis of 〈S〉C with respect to 〈 , 〉g. We fix
y ∈ Y (C). Let f be a local equation of µ∗(D) − E around y. We set sj = µ∗(ej)f for
j = 1, . . . , N . Then s1, . . . , sN are holomorphic around y and sj(y) 6= 0 for some j. On
the other hand,

gM = log

 N∑
j=1

|µ∗(ej)|2
 = − log |f |2 + log

 N∑
j=1

|sj |2


around y. Thus gM is an M -Green function of (C∞ ∩ PSH)-type. By virtue of [9, Propo-
sition 3.1], we have

|s|2g ≤ 〈s, s〉g dist(〈S〉C; g) ≤ dist(〈S〉C; g),

which yields µ∗(s) ∈ Ĥ0(Y,M) for all s ∈ S. Let C be a 1-dimensional closed inte-
gral subscheme on Y . Then there is s ∈ S such that C 6⊆ Supp(M + (µ∗(s))). Thus
d̂eg((M, gM )|C) ≥ 0. �

Finally let us see that v̂ol(P ) > v̂ol(Daaa)− ε. We fix an F∞-invariant volume form Φ on
Y with

∫
Y (C) Φ = 1. Using Φ and lgP , we can give the inner product 〈 , 〉lgP

on H0(lP ).
Then, by (iv) in the above claim,

〈µ∗(zeee), µ∗(zeee)〉lgP
≤ exp

(
−lφ(xxx1,ϕaaa′ (exxx1)),...,(xxxr,ϕaaa′ (exxxr))(eee/l)

)
.



BIG ARITHMETIC DIVISORS ON THE PROJECTIVE SPACES OVER Z 27

Here we consider positive definite symmetric real matrices Al = (aeee,eee′)eee,eee′∈lΘ∩Zn and
A′

l = (a′eee,eee′)eee,eee′∈lΘ∩Zn given by

aeee,eee′ = 〈µ∗(zeee), µ∗(zeee′)〉lgP

and

a′eee,eee′ =

{
exp

(
−lφ(xxx1,ϕaaa′ (exxx1)),...,(xxxr,ϕaaa′ (exxxr))(eee/l)

)
if eee = eee′,

〈µ∗(zeee), µ∗(zeee′)〉lgP
if eee 6= eee′.

Then, since ∑
eee,eee′∈lΘ∩Zn

aeee,eee′xeeexeee′ ≤
∑

eee,eee′∈lΘ∩Zn

a′eee,eee′xeeexeee′ ,

we have

#Ĥ0
L2(lP ) ≥ #

{
(xeee) ∈ ZlΘ∩Zn

∣∣∣∑
eee,eee′∈lΘ∩Zn

aeee,eee′xeeexeee′ ≤ 1
}

≥ #
{

(xeee) ∈ ZlΘ∩Zn
∣∣∣∑

eee,eee′∈lΘ∩Zn
a′eee,eee′xeeexeee′ ≤ 1

}
.

On the other hand, by Lemma 2.2,

lim inf
l→∞

log #
{

(xeee) ∈ ZlΘ∩Zn
∣∣∣ ∑eee,eee′∈lΘ∩Zn a′eee,eee′xeeexeee′ ≤ 1

}
ln+1/(n+ 1)!

≥ (n+ 1)!
2

∫
Θ
φ(xxx1,ϕaaa′ (exxx1)),...,(xxxr,ϕaaa′ (exxxr))(xxx)dxxx,

and hence v̂ol(P ) > v̂ol(Daaa) − ε by Lemma 2.1 and (b).
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