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INTRODUCTION
Let P% = PI‘Oj(Z[T(),Tl, ce ,Tn]), Hz = {Tz = 0} and Zi = TZ/TO for i = 0, 1, R %
Let us fix a sequence @ = (ag, a1, - .., ay) of positive numbers. We define a Hy-Green

function g of (C° N PSH)-type on P"(C) and an arithmetic divisor Dg of (C*° N PSH)-
type on I to be
9a :=log(ap + GI‘ZIP +ot an"zn|2) and D, := (Ho, ga)-

In this paper, we will observe several properties of D, and give the exact form of the Zariski
decomposition of Dg on PL. Further, we will show that, if n > 2 and D, is big and not
nef, then, for any birational morphism f : X — PP7 of projective, generically smooth and
normal arithmetic varieties, we can not expect a suitable Zariski decomposition of f*(Dy).
In this sense, the results in [9] are nothing short of miraculous, and arithmetic linear series
are very complicated and have richer structure than what we expected. We also give a
concrete construction of Fujita’s approximation of D,. The following is a list of the main
results of this paper.

Main Results. Let p, : Rgﬁl — R be a function given by

n n
a0, T1,. .., &n) = — sz log z; + Z@ log a;,
i=0 i=0

and let
Op i ={(z1,...,2n) €EAp | pa(l —x1 — - —2p,x1,...,25) > 0},
where A, := {(931, vy @) ERYy [y 4 @y < 1}. Then the following properties
hold for Dy:
(1) Dq is ample if and only ifag > 1,a1 > 1,...,a, > 1.
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2) E‘l is nefifand only ifag > 1,a1 > 1,...,a, > 1.
(3) Dg is bigifand onlyifag + a1 + -+ ap > 1.
(4) D, is pseudo-effective if and only if ag + a1 + - - -+ an, > 1.
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FIGURE 1. Geography of D, on IP’%

(5) fIO(P%, IDg) # {0} if and only if 1O, N Z™ # (). As consequences, we have the
following:
(5.1) We assume that ag + a1 + - - - + a,, = 1. For a positive integer |,
O, 1D,) — {0, £zl Gy iflay, . lay, € Z,
e {0} otherwise.
In particular; ifa ¢ Q"', then HO(P%,1D,) = {0} forall 1 > 1.
(5.2) For any positive integer I, there exists a € ngl such that Dy is big and
H°(P}, kDq) = {0}
forallk withl <k <.
©) <ﬁ0(1@%, zba)>z - Bz if10.NT A0,
(e1ye.eyn ) ELOGNZ™
(7) (Integral formula) The following formulae hold:

n—+1)!
( : / Pa(l = w1 — -+ —@p, 21, Tp)dwy - - - diy,

vol(D,) = 5
Oq

and

— —n+1 n+1'
eg(D. ):( 5 )/ Yol =21 — - —xp,x1,. .., Tp)dxy - - - dxp.
Ay

In particular, d/eTg(bZH) = ;(;I(Ea) if and only if Dq is nef.
(8) (Zariski decomposition forn = 1) We assume n = 1. The Zariski decomposition

of Dq exists if and only if ag + a1 > 1. Moreover, the positive part of Dy is given
by (0 Hoy — Vo H1, pa), where ¥g = inf Oy, 0 = sup O, and

Jalog| 1 | il < \/oit%s s,

pa(21) = < log(ao + ar]z1?) if \/ 5800 < |z1| < |/ 0%,

0o log |21 |2 if |21 > /8%,
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In particular, if ag + a1 = 1, then the positive part is —ay(z1).

(9) (Impossibility of Zariski decomposition for n > 2) We assume n > 2. If Dg is
big and not nef (i.e., ag + --- + an, > 1 and a; < 1 for some 1), then, for any
birational morphism f : X — 7 of projective, generically smooth and normal
arithmetic varieties, there is no decomposition f*(Dg) = P+N with the following
properties:

(9.1) P is a nef and big arithmetic R-divisor of (C° N PSH)-type on X.

(9.2) N is an effective arithmetic R-divisor of C°-type on X.

(9.3) For any horizontal prime divisor I on X (i.e. T' is a reduced and irreducible
divisor on X such that U is flat over Z.),

multp (N)
< inf {muler(F*(Ho) + (1/0)(6)) | 1 € Zo, & € HOUf*(Da)) \ {0} } -

(10) (Fujita’s approximation) We assume that Dg is big. Let Int(Og) be the set of
interior points of ©4. We choose 1, . .., x, € Int(O4) N Q" such that

n—+1)! —~
( 5 ) /@Qb(m,cpa(ﬁ)) 77777 (xm%(ir))(a:)dm > vol(Dg) — €,

where © := Conv{z1,...,z,} and

P(@1,0a(@1)) (@ 00 (@) (E) =
max{t € R| (z,t) € Conv{(z1, pa(Z1)),-- -, (@r,pa(®r))} CR" x R}

for x € O (see Conventions and terminology 2 for the definition of 1, . .., %;).
Using the above points x1, . ..,Z,, we can construct a birational morphisms p :
Y — P of projective, generically smooth and normal arithmetic varieties, and a
nef arithmetic Q-divisor P of (C° N PSH)-type on'Y such that

P < u*(Dy) and vol(P) > vol(D,) — .
For details, see Section 6.
I would like to express my thanks to Prof. Yuan. The studies of this paper started from

his question. I thank Dr. Uchida. Without his calculation of the limit of a sequence, I could
not find the positive part of Dg on . In addition, I also thank Dr. Hajli for his comments.

Conventions and terminology.

1. Forx = (x1,...,x,) € R", the i-th entry z; of z is denoted by (7). We define |z| to
be x| :=x1 + - + 24

2. Forz = (71,...,7,) € R" and m € R, we define 2" € R"*! to be

%m:(m—_%‘l—"'—fCT,fL'l,...,xr).

Note that || = m. For simplicity, in the case where m = 1, we denote " by Z.

3. Lete = (e1,...,6,) € ZLy and | = |e|. A monomial z7" - - - 2£” is denoted by z¢. The

b is denoted by ! .
el el e

multinomial coefficient

4. We freely use the notations in the paper [9].
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1. FUNDAMENTAL PROPERTIES OF THE CHARACTERISTIC FUNCTION

Let P}, = Proj(Z[Ty, T, ..., Tn)), Hi = {T; = 0} and z; = T;/T fori = 0,...,n.
Letus fix a = (ag,ai,...,a,) € R;"gl. We set

he = ag + a1|21|2 +- an|2n|2a ga =loghes and wg = ddc(ga)
on P"(C), that is,
ga = —log | Ty|?* +log (ao|To|* + -+ - + an|T0|?) .

Proposition 1.1. (1) wgq is positive. In particular, gq is a Hy-Green function of (C*° N
PSH)-type.
(2) If we set ®q = wL™, then

(ﬁ)nn!ao---a
P, =

27 pat

“dzy NdZL A - Ndzp, A dZE,

and/ b, = 1.
"(C)

Proof. (1) Note that

v—1 " g Q;Q;Zi%;
v - ? di/\d_i_ Mdi/\d—.
Wa or 2 () 2 z ha(z)2 2 Zj

=

Z'7j

If we set

a; ;05225
A: 52 1 Wty eieg
< Tha(2)  ha(2)? >1§¢§n,’

1<j<n

then it is easy to see that

ao Yimy ail il* + X aiajlzing =zl
ha(2)? .

Thus wyq is positive definite.
(2) The first assertion follows from the following claim:
Claim 1.1.1. For aq,...,a, € C,

n
det (8ijti — ti@tj) 1<i<p = t1 -+t — Z |ty -ty - tig1 -t
1<5<n —

Proof. We denote (5ijti — aidj)lgign by B. If t; = t; = 0 for i # j, then the i-the
1<j<n

column and the j-the column of B are linearly dependent, so that det B = (. Therefore,

we can set

n
detB:tl"'tn—zcz‘tl"'ti—l'tz‘+1"'tn
i=1

for some c1,...,c, € C. Itis easy to see that det B = —|a;|?ift; = Oand t; = --- =
ti—1 :ti+1 :"-:tnzl. Thus C;, = ‘O&i|2. Il
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Let | - | be a C°°-hermitian metric of O(1) given by

_ T3]
I Tila = 2 2 2
Vao 12+ a1|Ty> + - + an| T,
fori =0,...,n. Then ¢1(O(1),| - |a) = wa. Thus the second assertion follows. O

We define a function @g : R?&l — R to be

n n
Ya(xo, ..., Tn) = — Zmz log z; + le log a;,
i=0 i=0

which is called the characteristic function of go. The function ¢, play a key role in this

v
paper. Here note that ¢4 (0,...,1,...,0) = loga; for i = 0,...,n. Notably the charac-
teristic function is very similar to the entropy function in the coding theory.

Lemma 1.2. For (zg,...,7,) € R’ggl withxg+ 1+ -+ 2, = 1,
Ca(To, ..., xn) <log(ap + a1+ -+ ay),
and the equality holds if and only if
xo=ag/(ag+a1+-Fan),...,xn =an/(ag+ a1+ -+ ayn).
Proof. Let us begin with the following claim:

Claim 1.2.1. Foraq, ..., B1,..., 8 t1,...,t € Rsgwithay + -+, = 1,

T T T
v
Z a;logt; <log Z Biti | + Z alog —,
i=1 i=1 i=1 pi
and the equality holds if and only if%tl =...= g—:tr.

Proof. Note that if we set t, = %tz fort=1,...,r, then

T T T T T
.
o;logt; —lo Git; | = a;logt, —lo aith | + a; log —.

Thus we may assume that oc; = ; for all 7. In this case, the inequality is nothing more than
Jensen’s inequality for the strictly concave function log. g

We set I = {i | x; # 0}. Then, using the above claim, we have

in log a; < log (Z ai) =+ sz log @i,

iel iel iel
and hence

Ya(zo,. .., 2n) = Z —x;logx; + Zx, log a;
i€l iel

< log (Z cu) <log(aop + -+ + an).
iel

In addition, the equality holds if and only if a;/x; = a;/x; forall i,j € I and a; = 0 for

all ¢ ¢ I. Thus the assertion follows. U
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Note that
H(P,1H) = P Z2°

eEZ’éO,|e|§l

(for the definition of |e| and z¢, see Conventions and terminology 1 and 3). According as
[9]’ ’ : ‘lga’ ” : nga and <'7 '>lga are deﬁned by

|0liga = [0l exp(=1ga/2),  [9lliga = sup{[Plige (x) | z € P*(C)}

and
(6, )iy = / o exp(—ga) B,
P (C)

where ¢, € H°(P"(C),lHy).
Proposition 1.3. Let [ be a positive integer ande = (e1, ..., e,), € = (e}, ..., e},) € ZL,
with |e|, |e’| <.

(1) ||ze||129a = exp(—lpa(€'/1)) (for the definition of €, see Conventions and termi-
nology 2).
2)

0 ife #¢€,
<Ze; Ze/>lga - 1
(") @)a®

(for the definition of (Ell), see Conventions and terminology 3).

ife =¢

Proof. (1) By the definition of |2®|;,, we can see
log |2°lig, = eolog [Tol* + -+ + enlog |Tn|* = llog(ao|To|* + - - + an| T ),

where eg =1 —e; —--- — ey and (Tp : --- : T},) is a homogeneous coordinate of P"(C)
such that z; = T;/Ty. Here we set e, = ¢;/l fori = 0,...,land I = {i | ¢; # 0}. Then,
by using Claim 1.2.1,

1
Tlog|ze\l2ga <> eilog|Ti|* — log (Z al-ym?) < —pa(€h, ... €.
el el

Moreover, if we set T; = y/€}/a; for i = 0,...,n, then the equality holds. Thus (1)
follows.

(2) First of all, Proposition 1.1,

(€ ze/>l _ (v—l)n/ nlag - - an28z€dzy Adzy A -+ Adzy A dzp,
B 2 ny (a0 +ar|zi? 4o+ ap|zp)?)n

If we set z; = xil/ 2 exp(2my/—16;), then the above integral is equal to

/ nlag -+~ ay [Ty 2" exp(2m =T (e; — €)))
R7x[0,1]™ (CL() +aix1+ -+ an$n)n+l+1

dzy -+ - dwndfy - - - db,,
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and hence
0 ife#£¢e,

/

(2%,2% )1ga =

lan - - - I N

nlag - - - apx] xs i ,

/ n+l+1dac1--~da:n ife==¢€.
n (ap + a1z + -+ + apxy)

It is easy to see that

© aqx™ d m!
/0 (ax + b)" v ambr—m=1l(n—1)(n—2)---(n—m)(n—m—1)
fora,b € Rygand n,m € Z>q withn —m > 2. Thus we can see

( e e> nle,! - eq!
A A =
1% )1ga m+Dn+1—1)--(eg+ 1)ag" - CL?CLSO’
where eg = [ — e; — - - - — e,,. Therefore the assertion follows. 0

Next we observe the following lemma:

Lemma 1.4. Ifwe set A, = (n+ 2)/2 and B, = (n + 2) log \/27r + (n+2)/12, then
1 !

—log [ ————at’ - afr | = galko/l, ... kn/D)| < (A logl + By)

l ko!- - ky!

holds for alll > 1 and (ko, ..., k) € Z’z”gl with kg + -+ k, = L.

Proof. First of all, note that, for m > 1,

m

ml = V2rm o etin (0< 6, <1)
em
by Stirling’s formula. We set I = {i | k; # 0}. Then

0,
log(l!) = log(v2ml) +llogl — 1+ —

120’
log(k;!) = log(\/27k;) + ki log ki — 12k: (1el).

Therefore,

1 il i k)

l10g<k0k| 0-~-an>—cpa(k‘o/l,...,kn/l)

+ Dog(varl) + O -3 L og(v/2mk) + O
18 122~ 2 \1® 121k;

which yields the assertion. O

Let D, be an arithmetic divisor of (C*° N PSH)-type on P} given by
Da := (Ho, ga) = (Ho,log(ao + a1]z1[* + - - + an|2a[*)).
Moreover, for A € R, O, y is defined to be
O ={(z1,...,2n) €EAp | @a(l —x1 — -+ — 2y, 21,...,2,) > A},

where A, = {(21,...,2,) € RYy | 21 + -+ + 2, < 1}. Note that O, ) is a compact
convex set. For simplicity, we denote O o by Og, that is,

Ga:{(xlw-'axn)eAn‘(Pa(l_l'l—"‘—(L'n,.fCl,...,xn)20}7

Finally we consider the following proposition:



8 ATSUSHI MORIWAKI

Proposition 1.5. Let us fix a positive integer . Then we have the following:

(1) 1©gx NZ"™ # O if and only if there is a non-zero rational function ¢ on P}, such
that LHy + (¢) > 0 and ||¢||1g, < e
(2) If1@g\ NZ # 0, then

({¢ € Rat(PR)* | tHo + (8) 2 0, 6l <e™}) = P 222
CElGG,AmZ”

Proof. Let us begin with the following claim:

Claim 1.5.1. Let ¢ be a non-zero rational function on PY such that |[Hy + (¢) > 0 and
6l1ga < e~ If we write

o= Z cez® (ce €7),

eeZgo,\e\gl
then {e | ce # 0} C (Og .
Proof. Clearly we may assume that ¢ # 0. We set {e | ce # 0} = {e1,...,en}, Where

e; # ej fori # j. Let e; be an extreme point of Conv{ey,...,e;}. Here let us see that
€; € 1O, . Renumbering ey, . . ., e,,, we may assume that ¢ = 1. Then, for k > 1,
k!
k _ k _key k1 . km Jkie1+-+kmem
P" =g, 2"t + Z gl [Cer """ Cep .
kiykm€Z>0, m

]{31+~~+k’m=k‘,7k‘175k‘

Let us check that ke; # kie1 +- - -+ ke holds forall Ky, . .., ky, € Z>o with by +- - -+
km = k and k1 # k. Otherwise, e; = (ka/(k — k1))ea + -+ + (km/(k — k1))em. This
is a contradiction because e; is an extreme point of Conv{ey, ..., e, }. Therefore, we can

write
k _ k _ker -4
P" =g, 2"t + g Cor 2
e’eZgO,e’;ﬁkel

for some ¢, € Z, which implies

<¢k7¢k>klga = %
(27 (et )a™e

by Proposition 1.3. Since ||¢¥ /x5, < e !, we have (¥, ¢¥) 14, < e !, which yields

kl+n kl akgll S M
n ke -
Thus, by Lemma 1.4,

ke 1 1 kl 4 n
— | >Xx-—=(4,1 By) — —1 .
wa<k1)_x = (Anlog(k) + B.) Mog( n)

=l
Therefore, by taking k — 00, ©q (eTl) > )\, and hence e; € O, ).

+ (non-negative real number)

Finally let us see the claim. Lete;, , . .., e;, be all extreme points of Conv{ey,...,e;}.
Then, by the above observation,

Conv{ei,...,en} = Conv{e;,,...,e; } C1Oq

because [0, ) is a convex set. O
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Let us go back to the proofs of (1) and (2). By Proposition 1.3,
12%0l1g0 = exp(—lga(€'/1)).

Thus (1) and (2) follow from the above claim. Il
Remark 1.6. Let j, be a hermitian inner product of H°(P"*(C), Opn (1)) given by
/ag 0 -+ 0 0
0 1/a; -~ 0 0
(Pa(T5: Tj))o<ijan = | D : :
0 0 - 1/ag_y O
0 0 - 0 1la,

Let p, be the quotient C'°°-hermitian metric of Opn (1) induced by p, and the canonical
surjective homomorphism

HO(P™(C), Opn (1)) @ Opn — Opn(1).

Then go = — log pa(T0, To).
Remark 1.7. Hajli [6] pointed out that, for (z1,...,x,) € A,,

—pa(l—21 — - — Xy, @1, ..., Tp)
is the Legendre-Fenchel transform of log(ag 4+ aje*! + - - - 4+ a,e""), that is,
—@a(l =21 — - —Tp, 21, .., Tp)

=sup {u1z1 + - - + upx, —log(ag + are™ + -+ ane") | (ug,...,u,) € R"}.
This can be easily checked by Claim 1.2.1.
2. INTEGRAL FORMULA AND GEOGRAPHY OF D,

Let X be a d-dimensional, generically smooth, normal and projective arithmetic variety.
Let D = (D, g) be an arithmetic R-divisor of C%-type on X. Let ® be an F,-invariant

volume form on X (C) with ® = 1. Recall that (¢, ), and ||¢||, 1> are given by
X(C

)
(6,4) = /X o GFen(® ol = \f10.0)

for ¢, € H°(X, D). We set
H}2(X, D) := {6 € H(X, D) | [6],12
Let us begin with the following lemmas:
— log #HY,(X,ID
Lemma 2.1, vol(D) — lim 287512 (X. D)
l—o0 ld/d'
Proof. First of all, note that

IN

1.

—~ — . log#H°X,ID
vol(D) = lliglo 7 )

(cf. [9, Theorem 5.2.2]). Since H°(X,ID) C lﬁlgz (X,ID), we have

- log #HY,(X,ID
vol(D) < lilrgglf og # lf/chl! )
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On the other hand, by using Gromov’s inequality (cf. [9, Proposition 3.1.1]), there is a
constant C' such that || - ||sup < C1%71|| || 12 on H(X, D). Thus, for any positive number
& | - [lsup < exp(le/2)]| - || L2 holds for [ > 1. This implies that

H?,(X,ID) C HY(X,1(D + (0,¢)))

for [ > 1, which yields

log #H),(X,1D) < \7(;1(5+ 0.€).

lim sup

l—o00 ld/d'
Therefore, by virtue of the continuity of \7(;1, we have

log #HY, (X, D) < 73i(D)

i
T v

and hence the lemma follows. U
Lemma 2.2. Let © be a compact convex set in R"™ such that vol(©) > 0. Foreachl € Z>,

let Aj = (ae.e’)ee’clonzn be a positive definite symmetric real matrix indexed by 1© N Z™,
and let K; be a subset of RIONZ" ~ R#(ONZ") ojyen by

Kl = (.I'e) S Rl@mZ" Z ae’e/qjeme/ S 1
e.e’ clONZ™

We assume that there are positive constants C and D and a continuous function p : © — R
such that

1
log< ) —lp <e>‘ < Clog(l)+ D
Ge.e l
foralll € Z>1 and e € |© NZ". Then we have

1 K, Zl@ﬂZ” 1
lim inf og #(Ki 0 ) > /(p(a:)dx.
©

l—o0 [n+l1 -2

Moreover, if Ay is diagonal and all entries of A; are less than or equal to 1 (i.e., e er < 1
Ve,e' € 1© NZ") for each I, then

. log#(K;NnZIe"2Yy 1
A [nH 2 /@“’(”)dx'

Proof. By Minkowski’s theorem,
log #(K; N Z'°™") = log(vol(K})) — my log(2),
where m; = # (10 N Z"). Note that

1
log(vol(K;)) = —3 log(det(A;)) + log Vi,

where V,. = vol({(z1,...,2,) € R" | 23 + --- + 22 < 1}). Moreover, by Hadamard’s
inequality,

det(A) <[] aee-

eclONZ™

> 1og< L

Q
eclONZn €.e

Thus

log #(K; N Z'°7") > ) +log Vi, — my log(2).

N
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Further, there is a positive constant ¢; such that m; < ¢;{" for [ > 1. Thus we can see
lim log(Vy,,) /1"t = 0.
[—o0

Therefore, it is sufficient to show that

ecloNzn®
By our assumption, we have

e 1 1 1
— ) = = < —
go(l) l(Clogl%—D)i llog(

Note that

) <¢(3)+ %(ClogHD).

lim = Z ® (?) = zliglo Z @(x)lln = /@w(m)dx.

ecloONzZ® zeON(1/l)Zn

On the other hand, since m; < ¢1{™, we can see

_ 1
fim > s (Clogl + D) = 0.

ecleONZ™

Thus the first assertion follows.

Next we assume that A; is diagonal for each [. Then, since

1 1
ke I] [—,/ N ] ,
eclOnzn Gee | Gee

n 1
log #(K; NZ'97"") < Y~ log <2 — 1) .
e.e

eclONZ™

we have

Thus

n 1 1
log #(K; N Z°PNE"y < = E log < > +my log(3)
2 Ge e
ecloNzZ® ’

because aee < 1 and 2¢ + 1 < 3¢ for ¢ > 1. Therefore, as before,

log #(Ki N Z97%") _ 1 / o(x)dz
e

lim sup I <5

l—0o0

g

From now on, we use the same notation as in Section 1. The purpose of this section is
to prove the following theorem:

Theorem 2.3. (1) (Integral formula) The following formulae hold:

— 1)!
vol(Dg) = (n—|2— ) / Yol =21 — - — 2,21, .., 2p)dxy - - - dTp,
Oa
and
- —n+1 (TL—I—l)'
deg(D, ) = Yol —x1 — - —p, 21, .., Tp)dxy - - dTp.

() ?a is ample if and only ifa(i) > 1 foralli=0,...,n.
(3) Dg is nefifand only ifa(i) > 1 foralli=0,...,n.
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4) ?a is big if and only if |a| > 1.
(5) D is pseudo-effective if and only if |a| > 1.
(6) If|a| = 1, then

{0, 2210 ety iegg € gt
{0} ifla ¢ 771

(7) d/e\g(bZH) = ;(;l(ﬁa) if and only if Dy is nef.

HO(Py, 1D,) —{

Proof. First let us see the essential case of (1):

— 1)!
Claim 2.3.1. If |a| > 1, then vol(Dg) = (";) / va(t)dt.
Oa

Proof. In this case, vol(O,) > 0. By using Proposition 1.5,

H(P3,1D.) C o€ @D Z2°| (¢, )ige <1 C HY(PF,1Da),

eclO,NZ"
which yields
vol(Dg) = (n + 1)!lliglo log # {¢ € @eel@a?ﬁlzze (00 < 1)
by Lemma 2.1. If we set
2
Ki={ () RO | 3~ __Te <},

eclO,NZ" (”7;") ('éll>ae

then, by Proposition 1.3,

#e0e P 7| (6P, <1 = #(K DT,

eclOy,NZ"

On the other hand, fore € [©, N Z",

Moreover, by Lemma 1.4, there are positive constants A and B such that

log <<l Z”) (Qﬁ) - z%(’él/z)’ < Alogl+ B

holds for all | € Z>1 and e € 1O, N Z". Thus the assertion follows from Lemma 2.2.

Next let us see the following claim:
Claim 2.3.2. Ifs,t € Rygand a, 8 € Rwith a+ 3 # 0, then
Oéﬁta + ﬁﬁsa = (Oé + ﬁ)ﬁ( 1

1.
tesb)othq

Proof. This is a straightforward calculation.

g
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(2) and (3): First of all, w, is positive by Proposition 1.1. Let «; be a 1-dimensional
closed subscheme given by HoN---N H;—1 N H;11N---N Hy. Then it is easy to see that
d/e\g(ﬁ,zLﬁ) = (1/2)log(a(7)). Therefore we have “only if” part of (1) and (2).

We assume that @ (i) > 1 for all i. Then ¢, is positive on

{(xo,,xn)eR;—gl‘xO‘i‘_i_xn:l}

Thus, for e € Z%, with |e| < 1, 2° is a strictly small section by Proposition 1.3, which

shows that D, is ample.
Next we assume that a(i) > 1 for all 7. Let v be a 1-dimensional closed integral sub-
scheme of P7,. Then we can find H; such that v Z H;. Note that

-

Dq + (2i) = (Hi,log(a(0)|wo|* + - - - + a(n)|w,[*)),
where wy, = Ty, /T; (k = 0,...,n). Therefore d/e?g(ﬁa‘v) > 0 because
log(a(0)[wol* + - - - + a(n)wa[*) > 0.

(6): In this case, O = {(a(1),...,a(n))} and ps(a) = 0 by Lemma 1.2. Moreover,
if la € Z"1, then

Hzl(a(l),-..,a(n))||12ga = exp(—lpq(a)) =1
by Proposition 1.3. Thus the assertion follows from Proposition 1.5.
(4) and (5): By using (6), in order to see (4) and (5), it is sufficient to show the follow-
ing:
(1) ?a is big if |a| > 1.
(i) D, is pseudo-effective if |a| > 1.
(iii) Dq is not pseudo-effective if |a| < 1.
(i) It follows from Claim 2.3.1 because vol(©4) > 0.
(ii) We choose a real number ¢ such that ¢ > 1 and Dy, is ample. By Claim 2.3.2,

Dy +€Dig = (1+¢)D

tl%rea'
For any e > 0, since tl%re|a] > 1, (14 e)ﬁtliea is big by (i), which shows that Dy is
pseudo-effective.

(iii) Let us choose a positive real number ¢ such that Dy, is ample. We also choose a
positive number € such that if we set @’ = tTa, then la’| < 1. We assume that D, is
pseudo-effective. Then

Dy + €Dig = (14 €) Dy
is big by [9, Proposition 6.3.2], which means that D, is big. On the other hand, as |a’| < 1,
we have ©, = (). Thus H°(P%,nDg) = {0} for all n > 1 by Proposition 1.5. This is a
contradiction.

(1): For the first formula, we may assume that |a| < 1 by Claim 2.3.1. In this case, D,
is not big by (4) and O, is either () or {(ay,...,a,)}. Thus the assertion follows. For the
second formula, the arithmetic Hilbert-Samuel formula (cf. [4] and [1]) yields

deg(Dy™) _ X (HOPE, 1), ()

a — 1
(n+1)! o [
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On the other hand,

~ n l+n\ [/ 1\ <
X (HO(]P)ZJHO)a < ) >lga) = Z IOg <\/< n > (El>ael) + log V#(lAann).

eclA,NZ"

Thus, in the same way as the proof of Lemma 2.2 and Claim 2.3.1, we can see the second
formula.

(7): Tt follows from (1) and (3). O

Finally let us consider the following proposition:

Proposition 2.4. For any positive integer I, there exists a € Q”H such that |a| > 1 and
that HO(P2, kDg) = {0} fork =1,...,1
Proof. Let us choose positive rational numbers af, . .., a}, such thata} +---+a), < 1 and
ay <1/l,...,a,, <1/l. Wesetay =1—a) —---—a, anda’ = (a{),..., an). Moreover
for a rational number A > 1, we set

Ky ={x e A, | pa(x)+1log A > 0},
where A, = {(z1,...,2,) € RYy | 21 + - + 2, < 1}
Claim 2.4.1. We can find a rational number \ > 1 such that Ky C (0,1/1)".

Proof. We assume that Ky (1 /r,y) € (0,1/1)" for all m € Z>1, that is, we can find z,, €
Ki4+1/m)\(0,1/1)" foreachm > 1. Since A, is compact, there is a subsequence {Z,,, } of
{z),} such that = lim;_, &, exists. Note that £ ¢ (0, 1/1)™ because &, ¢ (0,1/1)"
for all 7. On the other hand, since ¢g (Ty,,) + log(1 + (1/m;)) > 0 for all i, we have
g/ (T) > 0, and hence x = (a}, ..., al,) by Lemma 1.2. This is a contradiction. O

We choose a rational number A > 1 as in the above claim. Here we set a = A\a’. Then,
as g = @a + log A, we have ©, C (0,1/1)". We assume that fIO(P%, kDg) # {0} for
some k with 1 < k < [. Then, by Proposition 1.5, there ise = (e1,...,e,) € kOg N Z",
that is, e/k € O4. Thus 0 < ¢;/k < 1/1 for all 7. This is a contradiction. O

3. ASYMPTOTIC MULTIPLICITY

Let X be a d-dimensional, projective, generically smooth and normal arithmetic variety.
Let D be an arithmetic R-divisor of C°-type on X. We set

N(D) = {z € Zoo | H'(X,ID) # {0}} .
We assume that N (D) # 0. Then j1,,(D) for z € X is defined to be
(D) = inf {mult, (D + (1/1)(¢)) |1 € N(D), 6 € A°(X.1D)\ {0}

which is called the asymptotic multiplicity of D at x. The following proposition is the
fundamental properties of the asymptotic multiplicity.

Proposition 3.1 ([9, Proposition 6.5.2 and Proposition 6.5.3]). Let D and E be arithmetic
R-divisors of CV-type such that N(D) # () and N(E) # 0. Then we have the following:
(1) MxLD +7E) < Nx(D) + Mx(E)
(2) If D < E, then ji;(E) < pz(D) + mult,(E — D).
() 12(D + (9)) = po(D) for 6 € Rat(X)*.
@) pz(aD) = apg(D) for a € Qo
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(5) If D is nef and big, then ji,,(D) = 0.
Moreover, we have the following lemma.

Lemma 3.2. Foreachl € N(D), let {¢;1,..., b1, } be a subset of H(X,ID)\ {0} such
that HO(X ID) C {¢r1,---, b1 )z Let x be a point of X such that the Zariski closure
{z} of {x} is flat over Z.. Then

pz(D) = inf{mult, (D + (1/0)(¢1:)) | L € N(D), i =1,...,7m}.
Proof. Clearly

(D) < inf{mult, (D + (1/0)(¢1:)) | L € N(D), i =1,...,1}.

Let us consider the converse inequality. For I € N(D) and ¢ € H(X,ID) \ {0}, we set
¢ =i, cipy; forsome ci, ..., ¢, € Z. Note that

mult, ((¢ + 1)) > min{mult,((¢)), mult,((¢))} and mult,((a)) =0
for ¢, 1 € Rat(X)* and a € Q* with ¢ + 1 # 0. Thus we can find ¢ such that
mult, ((¢)) = multe((¢r)),

and hence the converse inequality holds. 0

4. ZARISKI DECOMPOSITION OF D, ON P},

We use the same notation as in SecLion 1. We assume n = 1. In this section, we
consider the Zariski decomposition of D, on P}, = Proj(Z[Tp, T1]). Note that O, is a
closed interval in [0, 1]. For simplicity, we denote the affine coordinate z; by z, that is,
z = T1 / T().

Theorem 4.1. The Zariski decomposition of Dq exists if and only if ag+ai > 1. Moreover;
if we set ¥gq = inf O, 0, = sup Oq, P, = 0, Hy — 9, H1 and

Y log | 2|2 if 2] < /o tey,
pa(z) = {loglao + a1lz) if [ f%e < 12| < \/ %0

fa log |2|? if 2] > [ 5:t4%,

agfa

then the positive part ofﬁa is Py = (Pa, pa), where a1 (1=6a) is treated as oo if 0 = 1.

Proof. First we consider the case where D, is big, that is, ag + a; > 1 by Theorem 2.3. In
this case, 0 < ¥4 < 0, < 1. The existence of the Zariski decomposition follows from [9,
Theorem 9.2.1]. Here we consider functions

r {ze]P’l((C) 12| < “09“} —R

a1(1 — 90)
and
aoﬁa
: PY(C — 5> =R
T2 {ZG ( ) |Z|> al(l_ﬁa)}
given by
0 if |2] < /00
7'1(2’) — 1(1 79a)

—~alog |2|? + log(ao + a1|2[?) if |/ 2008 < || < | /-0fe .
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and

—Oalog 2|2 +log(ag + a1|2[?) if /00 < |2 < | /0ol

ro(z) = .
0 if |z] > ,/algff“ea).

In order to see that pq is a P,-Green function of (CY N PSH)-type on P(C), it is sufficient
to check that r; and 7o are continuous and subharmonic on each area. Let us see that
71 is continuous and subharmonic. If 1, = 0, then the assertion is obvious, so that we
may assume that ¥, > 0. First of all, as @g(1 — U4,7,) = 0, we have r1(z) = 0 if

|z| = al‘(lf% > and hence 7 is continuous. It is obvious that 7 is subharmonic on
a

agUq agq aofa
{ze(C |z| < al(l_ﬂa)}u{ze(c <|z| < - }

a1(1 — 790,)
By using Claim 1.2.1,
’2

= (1 — 94)log(1) + Y4 log \z\2
< log(agp + a1|z]2) + ©a(1 — Jq,04) = log(ap + a1\2|2).

Thus 1 > 0. Therefore, if |z] = ,/ m?f%a)’ then

1 2

ri(z) =0< o ), ri(z + eeV M) dt

g log |2

for a small positive real number €, and hence r; is subharmonic. In the similar way, we can
check that r5 is continugus and subharmonic.
Next let us see that P, is nef. As r1(0) = 0 and r2(c0) = 0, we have
deg(?a‘Ho) = deg(?a‘Hl) =0.

Note that

— —

P, + 19a(z) = ((911 - ﬂa)HO,pa(z) — Vg log |Z|2)

5 rl(z) lf|2|§ \/@7
pa(2) — Valog |z = 5 . a0
(B — o) log |22 if |2] > | /oonla

—

Therefore, pg(2) — ¥glog |z|> > 0 on P1(C), which means that P, + ¥4(2) is effective.
Let « be a 1-dimensional closed integral subscheme of IP’% with v # Hgy, H1. Then

deg(Pal. ) = deg(((fa — Va)Ho, pa — dalog |2[%)] ) > 0.

and

By using Proposition 1.5, we have (i51,(Da) = 1 — 04 and 7, (Dg) = ¥4 Thus the
positive part of D, can be written by a form (F,, q), where ¢ is a P,-Green function of
(C° N PSH)-type on P*(C) (cf. [9, Claim 9.3.5.1 and Proposition 9.3.1]). Note that P, is
nef and P, < D,, so that

pa(2) < q(2) <log(ag + a1]z|?).

We choose a continuous function u such that p, + « = ¢. Then u(z) = 0 on

apla
a1(1 — 9a) )

agUq

— < 2] <
al(l—ﬁa)_| |_
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Moreover, since ¢(z) = Uglog|z|> + u(2) on |z| < al’(lff‘ba), w is subharmonic on
|z| < al((lff%a)' On the other hand, u(0) = 0 because

deg((Pa, q)lpr,) = u(0) = 0.

o agVa
Therefore, u = 0 on |z| < a1 (1—9a)

— aof
see thatw =0 on |z| > 4 [ ari=oy-

Next we consider the case where ag + a; = 1. By Claim 1.2.1,

by the maximal principle. In a similar way, we can

ai log|z|” < log(ag + ax|2|?)

—

on P1(C). Thus —ay(z) < D,, and hence the Zariski decomposition of D, exists by [9,

Theorem 9.2.1]. Let P be the positive part of Dg. Then —aq(z) < P.

Let us consider the converse inequality. Let ¢ be a real number with ¢ > 1. Since
P < Dg < Dy, we have P < Py, because Py, is the positive part of D;q by the previous
observation. Since @, = ©q + log(t), we have lim;_,1 ¥4 = lim;_,1 014 = a;. Therefore,
we can see

—

%in{?m = Py = —ay(2).

—

Thus P < —aq(2).

Finally we consider the case where ag + a; < 1. Then, by Theorem 2.3, D, is not
pseudo-effective. Thus the Zariski decomposition does not exist by [9, Proposition 9.3.2].
0

5. WEAK ZARISKI DECOMPOSITION OF D,

Let X be a d-dimensional, projective, generically smooth and normal arithmetic variety.
Let D be a big arithmetic R-divisor of go—type on X. A decomposition D = P + N is
called a weak Zariski decomposition of D if the following conditions are satisfied:

(1) P is a nef and big arithmetic R-divisor of (C" N PSH)-type.
(2) N is an effective arithmetic R-divisor of CO-type.

(3) multr(N) < ur(D) for any horizontal prime divisor I' on X, that is, I" is a
reduced and irreducible divisor I' on X such that I' is flat over Z.

Note that the Zariski decomposition of a big arithmetic R-divisor of C°-type on an arith-
metic surface is a weak Zariski decomposition (cf. [9, Claim 9.3.5.1]). The above property

(3) implies that multp(N) = up(D) for any horizontal prime divisor I on X. Indeed, by
(2) and (5) in Proposition 3.1,

pur(D) < pr(P) 4+ multp(N) = multp(N) < pp(D).

From now on, we use the same notation as in Section 1. Let us begin with the following
lemma.

Lemma 5.1. Let f : X — P7 and g : Y — X be birational morphisms of projective,
generically smooth and normal arithmetic varieties. If f*(Dq) admits a weak Zariski
decomposition, then g* (f*(Dy,)) also admits a weak Zariski decomposition.
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Proof. Let f*(Dg) = P + N be a weak Zariski decomposition of f*(D,). We denote
birational morphisms Xq — Pg and Yo — Xq by f and gg respectively. We set

O = {E € R"™ | ¢ € Oy},

fo(Hi) =32 aijDjfori=0,...,nand N =}, b;D; on Xq, where D;’s are reduced
and irreducible divisors on Xq. Since

IHy+ (2°)=(l—e(1)—---—e(n))Hy+e(1)H; + --- +e(n)H,
fore € [©, N Z", by Lemma 3.2, we have

pp; (f*(Da)) = min {Z 0
=0

(Toy .-y Tn) Géa}.

Thus

n
bj S min {Z:ciaij

=0

(Toy .-y Tp) Eéa}.

for all j.

Here let us see that g*(f*(Da)) = g*(P) 4+ g*(NN) is a weak Zariski decomposition.
For this purpose, it is sufficient to see that multpr(¢*(N)) < pr(g*(f*(Da))) for any
horizontal prime divisor I on Y. If we set ¢; = multr (g5 (D;)), then

d; := multr (g5 (f3(H:))) = > aijc;.
j

For (xg,...,Zp) € Og,
indi = Z <Z xiaij> Cj Z ijCj = multp(ga(N)),
i j i j
which yields ur(g*(f*(Da))) > multr(g*(NV)). O
Next let us consider the following lemma:

Lemma 5.2. Let © be a compact convex set in R" and p : R" — R"™! the projection

givenby p(x1,...,7,) = (T1,...,Zn_1). Then p(©) is a compact convex set in R"~! and
there exist a concave function 6 on p(©) and a convex function ¥ on p(©) such that
_ n (:L‘la"'?xnfl) EP(G)a
@{(xl’”"xn_l’m”)ER Ny, .oy xp—1) <zp < O0(z1,...,20-1) |~
Proof. Obviously p(©) is a compact convex set in R"~!. For (z1,...,7,_1) € p(0), we
set
O(z1,...,2n-1) = max{z, € R| (x1,...,2p-1,2,) € O},
1, ... xp—1) = min{z, € R | (21,...,2p-1,2,) € O}
Clearly
- n (.Tl,-..,xn_l) Ep(@),
0= {““1"“’“—1’“””") SR W@, ) < < O0(a1, . an) [

We need to show that 6 (resp. ©) is a concave (resp. convex) function. Since
(1, 1,01, 201)), (2,2, 0(2), ..., 2),_1)) €O
for (z1,...,xn—1), (2},...,2),_1) € p(O), we have

n—1

a1y 1,021,y Tpe1)) + (L= N) (2,2, 0(2), ..., 2),_1)) €O
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for 0 < X\ < 1, which shows that

N(z1, .. 1) + (1= N0, ... 20 )
<ON(w1, .y n1) (=) (2], .. 2h ).
Thus 6 is concave. Similarly we can see that ¥ is convex. 0

Remark 5.3. If p(©) is a polytope in Lemma 5.2, then # and ¢ are continuous on p(©) (cf.
[3]). In general, # and ¥ are not necessarily continuous on p(©). Indeed, let us consider
the following set:

O={(z,9,2) eR*|0<y<1,0<2<1, 22 <yz}.

Yy—z 2 Y+ z 2
2?2 <yz <+ :E2+<2> S( 5 >7

we can easily see that © is a compact convex set in R?. Let p : R? — IR? be the projection
given by p(x,y, z) = (z,y). Then

p(©) ={(z,y) e R* | 2® <y < 1}.

Since

Moreover, 1 is given by
22y if (x,y 0,0),

Doy = |7 @) £ 0.0

0 if (x,y) =

and hence ¥ is not continuous at (0, 0).

Note that ©, is a compact convex set of R”. We say a hyperplane ayx1+- - -+anx, =
in R™ is a supporting hyperplane of O at (b1, ...,b,) € O if

Oq € {121 + -+ apzy > B} and  anby + -+ apby, = B

Proposition 5.4. Let (b1,...,b,) € O(Oy), that is, (b1, ..., by) is a boundary point of Og.
We setbg =1 — by — --- — b,. We assume

ap+ayr+---+a,>1 and #{i|0<i<n, b =0} <1.

Then ©4 has a unique supporting hyperplane at (by, . .., by,). Moreover, in the case where
b; = 0, the supporting hyperplane is given by

{x1+--'+xn—1 ifbo = 0,
;=0 if b; = 0 for some i with 1 < i < n.
Proof. Here we set

Ga(T1y oy n) = @a(l —x1 — - — T, X1, ..., Tp)
on A, = {(z1,...,2n) eRgo\x1+---+xn§1}.Then

Op = {(z1,...,2n) € Ay | Pa(z1,...,2,) > 0}.

First we assume that (b1,...,b,) & O(Ay). Then ¢q(b1,...,b,) = 0. Note that, for
(X1, xn) € Ap \ O(Ay),

(Pa)zy (T1y- -y xn) = = (Pa)an, (T1,- -, Tn) =0 <=

Tl p)=|———m—r...,—m |,
! " ap+--+a, T ag+ - +an
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and ¢q (aoJr(.l}Jran IR a0+C.L.7.l+an) - log(ag +ot an) > 0. Thus we have

((Pa)zy (b1 -y bn), ooy (Pa)ay (b1 -5 bp)) # (0,...,0),

which means that ©, has a unique supporting hyperplane at (b1, ...,by).

Next we assume that (by,...,b,) € 9(A,). Considering the following linear transfor-
mations:
/ Ty =1,
xl — 331,
T =y,

/
xnfl - mn—17

=1
Ty =1—-21 - —xp,

l’fn = Ty,
we may assume b,, = 0. Note that (by,...,b,—1) € Ap_1\I(Ap_1). Letp : R® — R"~L

be the projection given by p(z1,...,2,) = (z1,...,2,—1). By Lemma 5.2, there are a
concave function 6 on p(©,) and a convex function ¥ on p(6,) such that

_ (xl,...,l'nfl) Ep(@a),
@a N {(xh' ”7xn_17xn) ‘ 19(1'1,--- wrnfl) < Tn < 9(1‘17"' 71"77,71) '

Claim 5.4.1. (b1,...,by—1) is an interior point of p(©q). In particular, 9 is continuous
around (b1, ...,b,—1) (cf. [5, Theorem 2.2]).

Proof. Let us consider a function ¢ : [0,1 — by — --- — b,—1] — R given by 9(t) =
®a(b1,...,bn—1,1). Note that

@b'(t):log%(l_bl_;._bn_l —1) >0

ao

on (O, a"(lfblf"'fb”’l)). Thus

aptan

an(l—by — - —
ap + an

by
¢a (b17"‘7bn—17 1)> >¢a(blv"'7bn—170)20‘

ap+an

Therefore, as (bl, ey b1, a"(l_bl_“'_b”‘l)) € A, \ 9(A,), we can find a sufficiently
small positive number € such that

n—1
W(l—by — - — by W(l—=by — - — by
H(bi—ﬁbi+€)x(a( . : 1)_€’a( 2 b 1)+6>
ey ao + an ap + an
is a subset of ©,, and hence
n—1
(blv .. '7bn—1) € H(bl - €7bi + 6) c p(@a)
i=1

We seta’ = (ag, . ..,an—1). Then
O = {(#1,...,2n_1) ER" | (z1,...,27-1,0) € Oga}.
Clearly (b1,...,bp—1) € Og and ¥ = 0 on O,.
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Claim 5.4.2. 9 is a continuously differentiable function around (b, ..., b,_1) such that
Vg (b1, bp1) =+ =V, (b1,...,bp—1) = 0.
Proof. By Claim 5.4.1, there is a positive number € such that
bi—€e>0,...,0p—1—€>0, (bi+€)+-+ (bh—1+¢€) <1

and 9 is continuous on U = [[7=}'(b; — €,b; 4 ¢). If (x1,...,2,_1) € U \ O, then
Hxy,...,2n—1) > 0, and hence

¢a(x1, . ,a;n_l,q?(xl, . ,xn_l)) =0
for (z1,...,2,—1) € U\ Oy . Note that

(5.43) (%)xi:logz,;<1—x1—...—xn>_

Z;

Since ¥(b1,...,bn—1) = 0 and ¥ is continuous at (b1, ..., b,—1), choosing a smaller € if
necessarily, we may assume that

(¢G)In ($17 st 7xn—17 19($17 st 7$n—1)) > 0
forall (z1,...,2n—1) € U\ Oy . Thus, by using the implicit function theorem, ¥ is a C*°
function on U \ O, and
((;Sa)xl (.’131, <oy Tp—1, ﬁ(.’]fl, v 7$n—1))
((ﬁa)mn(wl, ey p—1, ’19(1'1, . ,xn_l))

Let us consider a function ; on U given by

(544) ﬁmi(xl,...,xn_l) = —

0 if (21, 2n1) € U N Oy,
%’(xlw--,ﬂfnfl) = .
ﬂxi(xly---axn—l) lf(xlv-'-yxn—l)EU\@a“

Then, by using (5.4.3) and (5.4.4), it is easy to see that +; is continuous on U. Thus the
claim follows. O

The above claim shows that ©, has the unique supporting hyperplane at (b1, ..., b,)

and it is given by z,, = 0. O
Corollary 5.5. We assume that ag < 1 and ag+a1+---+a, > 1. Letaq,...,a, € Ryg
and (b1, ...,by,) € Og such that

arby + -+ apby, = min{ayxy + -+ apay | (21, .., 2,) € Og ).

Then (by,...,by) & O(Ayp).

Proof. We prove it by induction on n. If n = 1, then the assertion is obvious, so that we
may assume n > 1. If ag + - - - + a,, = 1, then

ai Qp,
@a: gee ey .
{(a0+---+an a0+---+an)}

In this case, the assertion is also obvious. Thus we may assume that ag + - - - + a, > 1.
We assume that b; = 0 for some 1 < i < n. Then, since ©, N {z; = 0} # (), we have

a1+ -+ai1+ai41+--+ap > 1.
Thus, by the hypothesis of induction,
br# 0, bisy # 0,bis1 # 0,y by # 0,by + -+ by # 1.
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Therefore, by Proposition 5.4, we have the unique supporting hyperplane x; = 0 of O,
at (by,...,b,). On the other hand, ayxy + -+ + apzy, = a1by + -+ + a,by, is also a
supporting hyperplane of O, at (b1, ..., b, ). This is a contradiction.

Next we assume that by + - - - + b, = 1. Since b; # 0 for all ¢, by Proposition 5.4, the
unique supporting hyperplane of ©, at (by,...,b,) is 21 + -+ + 2, = 1, which yields
a1 =--+ = ay, and hence O C {z1 + - + x, = 1}. This is a contradiction because

€ Oq,

gy

< ay an >
ag+-+a, aot - +ay
as required. U

Theorem 5.6. We assume that n > 2 and Dy is big. Then Dy is nef if and only if there is a
birational morphism f : X — IP7 of projective, generically smooth and normal arithmetic

varieties such that f*(Dg) admits a weak Zariski decomposition on X.

Proof. If D, is nef, then D, = D, + (0,0) is a weak Zariski decomposition. Next we
assume that D, is not nef and there is a birational morphism f : X — IP7 of projective,
generically smooth and normal arithmetic varieties such that f*(D,) admits a weak Zariski
decomposition f*(Dg) = P+ N on X. By our assumptions, ag+- - -+a, > land a; < 1
for some 7. Renumbering the homogeneous coordinate Ty, . . ., T},, we may assume ag < 1.
Let £ be the generic point of Hy N --- N H,, thatis, £ = (1 :0:---: 0) € P*"(Q). Let
L; be the strict transform of H; by f fori = 0, ..., n. We denote the birational morphism
Xg — P§ by fg. Let f' : X’ — P be the blowing-up along Hy N --- N Hy,. By using
Lemma 5.1 and [7], we may assume the following:
(1) Let X be the exceptional set of fg : Xg — Pg. Then X is a divisor on Xq and
(X4 (Lo)g + -+ + (Ln)Q)red is a normal crossing divisor on Xg.
(2) There is a birational morphism g : X — X' such that the following diagram is
commutative:

X
X
f X'’
s
P

Claim 5.6.1. There are &' € X(Q) and a reduced and irreducible divisor E on X with
the following properties:

@ fo(§) =¢&and{ € EN(Ln)q.

(b) E and (Ly,)q is non-singular at &'

(¢) L is exceptional with respect to fq : Xq — Pp.
(d) There are positive integers o, . . . , o, Such that

f¢(Hi) = a;E + (the sum of divisors which do not pass through €')
fori=1,...,n—1and
JG(Hn) = (Ln)g + anE + (the sum of divisors which do not pass through £').

Proof. Let Lj, be the strict transform of Hy, by f’ and 32’ the exceptional set of fg, : Xg) —
Pg. Then X = Pg " and D' := (L))o NY' = Py Leth : L, — L}, and hg :
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(Ln)g — (Ly,)q be the birational morphisms induced by g : X — X’and gg : Xqg — Xg
respectively. Let D be the strict transformation of D’ by hg. As before, let ¥ be the
exceptional set of fg : Xqo — Pg. Let

(E+ Lo)g+ -+ (Ln)g)rea = (Lo)g + -+ (Ln)o + Eo + - + Ei
be the irreducible decomposition such that E;’s are exceptional with respect to fg. Since
D C (Ly)g N X, there is E; such that D C (L) N E;. Renumbering Ey, ..., E, we
may assume that E; = Ej. As (Lo)g + -+ -+ (Ln)g + Eo + - - - + Ej is a normal crossing
divisor on Xq, we have
D A Sing((La)g) € D, DN Sing(E) € D,
DN(L)gCD(i=0,....,n—1),
DNE;CD(j=0,...,l—-1).
Note that D(Q) is dense in D because D — D’ is birational. Thus we can find ¢’ € D(Q)
such that

n—1 -1
¢ ¢ (DN Sing((Ly)g)) U (DN Sing(£)) U |J (DN (La)g) U J (DN Ey).
i=0 §=0
Therefore the claim follows. O
Note that
f@(lHo + (27 ) =fo((l—er— - —ep)Ho+e1Hy + - - + e Hy)

=en(Lp)g + (a1e1+ -+ anep)E
+ (the sum of divisors which do not pass through ¢&’).
Therefore, by Lemma 3.2,

,U{’(f*(Da)) = min{alxl Tt on_1Tp—1 + (an + 1)3371 ‘ (w1, ,7n) € @a}v
pe(f*(Da)) = min{azy + -+ + apwy | (21, ,2n) € Oq},
pir, (f*(Da)) = min{ay | (z1,...,2n) € Oa}.
Further,
multe (N) = multg(N) + multz, (N) < we(f(Da)) + pr, (f*(Da))-
By (2) and (5) in Proposition 3.1,
0= 1/ (P) = ig:(f*(Da)) — multes (N).
Therefore, if we set
A=min{az) + -+ 18n1 + (o + Dy | (21, ,2,) € Oq},
B =min{ajz1 + -+ apzy | (21, ,2pn) € Of},
C = min{z, | (z1,...,2,) € Oa},
then we have 0 > A — B — C. We choose (b1, ...,b,) € ©4 such that
A=aiby+ -+ ap_1bp—1 + (an + 1)by.
Thus, as a1 by + - - - + ayb, > B and b, > C, we have
0>A-B-C
> aiby + 4 ap—1bp—1 + (o + )by, — (a1by + -+ - + aby) — by, =0,
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which implies a1by + -+ + anb, = B and b, = C. On the other hand, by Corol-
lary 5.5, (b1,...,b,) & O(A,,), and hence there is a unique supporting hyperplane of O,
at (b1, ..., by) by Proposition 5.4. This is a contradiction because

a1x1 + o+ op_1Tp—1 + (an + 1)xn = A7
Q11+ + ap_1Tp-1 + anZn = B,
T, =C
are distinct supporting hyperplanes of O, at (by, ..., by). O

6. FUJITA’S APPROXIMATION OF D,

Fujita’s approximation of arithmetic divisors has established by Chen and Yuan (cf. [2],
[10], [8] and [9]). In this section, we consider Fujita’s approximation of D, in terms of
rational interior points of Oy.

First of all, we fix notation. Let 1,...,2, € R" and ¢1,...,¢, € R. We define a
function ¢z, 4. .. (@,.¢,) O © = Conv{zy,...,z,} tobe

= Zf 1 Aili
S A € R>0, 22:1 A=1 ’

¢($1’¢1)7 ’(mT7¢T) = max {Z )\Zgbl

In other words, ¢(z, ¢.).....(z,.¢,) 18 gven by

P(z1,61),.. (i) (T) = max{® € R | (z,¢) € Conv{(z1,¢1),...,(Tr, &)} SR x R}

Thus we can easily see that ¢z, ¢,),....(z,¢,) 1S @ continuous function on © (cf. [3]).

Let ¢ be a continuous concave function on ©. Clearly ¢, o(z))),... (@ 0(@) < ¥-
Moreover, for a positive number ¢, if we add sufficiently many points ,1,...,%,, € ©
to {z1,...,2,}, then

P = € < Pa1,0(21)),0s (@0 (@0)), (@141, @r 1)) oo @0 (@) = P

From now on, we use the same notation as in Section 1. We assume that D, is big.

Claim 6.1. For a given positive number ¢, we can find rational interior points 1, ..., T,
of Og, that is, 1, ...,x, € Int(O4) N Q" such that

n —|— 1
/ (0160 (1))@ pa(E)) (@)dE > vOl(Da) — €,

where © = Conv{:z:l, N

Proof. First of all, we can find 21, ...,z € Int(04) N Q" such that

1! - —
(n+1) / wa(T)dx > vol(Dg) — ¢,
2 e
where © = Conv{z,...,z, }. Thus, adding more points &,/ ;1,...,Z, € © N Q" to
{z1,...,2,}, we have
(n —|— 1)!

/ d) (Z1,%a (Z1)),-- 7(xr790a(xr))( z)dz > VO](Ea) -

We choose a sufficiently small positive number § such that
(a) © C O,-5, and
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(n

1)! S
) /@gb(ml,tpeéa(il))"“’(m“‘ﬂoe5a(57')) (Z)dx > VOl(Da,) — €.

We seta’ = e %a. By virtue of [9, Theorem3.2.3], we can find positive integer [ such that

(c) log diSt(HO(lHo) ® C; l()ga/) < lpd and
(d) loxq,...,lox, € Zgo.

Let us consider the following Z-module:

V= P zeo" C HO(PY, loHy).
=1

Then we have a birational morphisms p : Y — P7 of projective, generically smooth and
normal arithmetic varieties such that the image of

V @z Oy — Oy (1" (loHo))
is invertible, that is, there is an effective Cartier divisor /' on Y such that
V ®@z Oy — Oy (u*(loHy) — F)
is surjective. Here we set

= w*(loHo) —
gr = p (= logdlst(V ® C;loga’) + lod) ,
9¢ = 1" (loga +log dist(V © C;loga')) -

Claim 6.2. (i) 90 +9r = 1" (loga)-
(i) gg is a Q-Green function of (C* N PSH)-type and Q = (Q, g) is nef.
(iii) gp is an F-Green function of C*°-type and gr > 0.
(iv) Ifwe set P = (P,gp) = (1/10)Q, then, fore € 1© N Z", u*(2¢) € H(IP) and

|17 (2%) g < XD (~1D(a1,0 @), @0 @) (€/1)) -
Proof. (i) is obvious. (ii) is a consequence of Lemma 6.3 below. The first assertion of (iii)
follows from (i) and (ii), and the second follows from (c).

(iv) Let us consider arbitrary Aj,..., A, € R such thate/l = \jz; + --- + Az, and
A1+ -+ A = 1. Then, since Q + (u*(2'%)) > 0 for all 4,

1P+ (1" (2%) = (I/10)Q + > \ill/lo)(u* (20%1))
i=1

= > lU/10) (Q + (w(P=))) = 0,
i=1
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and hence 1*(2¢) € H°(IP). Moreover, by using [9, Proposition 3.2.1] and Proposi-
tion 1.3,

1 (2°) g = 1™ (%) exp(=(1/0)gq)

_ H (|M*(zlozi)|2>’\i(l/10) exp(—lp* (gar))
11 p(dist (V @ C; logar))!/10

lo-’tz

|log/ M) < g loz; Ai(l/lo)
_HM dist V®(C l09a’) H(Hz | Oga)
- Hexp(_lﬂ@a’ (Ei)y\i(l/lo = &Xp < lz )‘z(/)a,’ z; ) '
=1

Thus (iv) follows. O

Lemma 6.3. Let 1 : Y — X be a birational morphism of projective, generically smooth
and normal arithmetic varieties. Let D be an arithmetic R-divisor of CO-type on X and
S a subset of HY(X, D). We assume that there is an effective R-divisor E on'Y with the
following properties:
(1) p*(D) — E € Div(Y), that is, u*(D) — E is a Cartier divisor.
() p*(s) € HO(Y, u*(D) — E) forall s € S and
() Supp(u*(D) — E + (7 (s))) = 0.
seS
We set
M :=p*(D)—E and gy = p* (g +logdist((S)c; 9)).
Then gys is an M-Green function of (C° N PSH)-type and (M, gar) is nef.
Proof. Let eq,...,ey be an orthonormal basis of (S)c with respect to ( , ),. We fix
y € Y(C). Let f be a local equation of ;*(D) — E around y. We set s; = u*(e;) f for

j=1,...,N. Then sq,..., sy are holomorphic around y and s;(y) # 0 for some j. On
the other hand,

N

N
=log | Y |u*(e;)]? | = —log|f* +1log | Y _|s;|?
j=1

j=1
around y. Thus gy is an M-Green function of (C°° N PSH)-type. By virtue of [9, Propo-
sition 3.1], we have
|55 < (s, 8)g dist((S)c: ) < dist({S)c; 9),
which yields y*(s) € HO(Y, M) forall s € S. Let C be a 1-dimensional closed inte-

gral subscheme on Y. Then there is s € S such that C € Supp(M + (u*(s))). Thus

Finally let us see that ;51(?) > \a(ﬁa) — €. We fix an F-invariant volume form ® on
Y with fy((c) ® = 1. Using ® and lgp, we can give the inner product ( , );g,, on H(IP).
Then, by (iv) in the above claim,

(1 (2%), 1" (2°))1gp < exXP (1210 @1)srons(@rspy @) (€/1)) -
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Here we consider positive definite symmetric real matrices A; = (aee’)ee’cionzn and
/ / :
Al = (a&e/)e,e’el@ﬂZ" given by

aeer = (1" (2%), 17 (2° ))igp

and

b exD (Fl @y oy @)@y @) (€/1)  ife=¢,

ae7e/ - *( e (e if /

(/’L (Z )a:u (Z )>lgp ife #£ ¢
Then, since
Z Ge.e! Tele! < Z a/e’eliUeer
e.e’ clONZ™ e.e’ clenZn

we have

#HY,(IP) > # {(we) c zlenz

Qee'Tele < 1}

Ze,e’el@ﬂZ" ee'ete’
eonz™ § : !

= {(xe) €z ee’clONZ" GeerTele = 1} '

On the other hand, by Lemma 2.2,

. -, log# {(l'e) c Zl@ﬂZ” Ze,e’EZGOZ" a/e’e/.’lfel‘e/ S ]_}

(n+1)!
> 2/@¢(:1:1,goa/(51))7...,(:1:7»,@‘1/(57»))(x)dx7

and hence vol(P) > vol(D,) — € by Lemma 2.1 and (b).
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